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1 Course Aims and Objectives

This class is TA session of Econometrics I. Our course aim is to review the contents of

the main class, but mainly explain the exercises solution and related R exercises.

2 Matrix Knowledge

Paying attention to the vectors’ or matrices’ dimension is vital for their calculation.

2.1 Some General Rules for Matrix Calculation

Consider the case of matricies A ∈ R2×2 and B ∈ R2×2:

A =

(
a11 a12
a21 a22

)
; (1)

B =

(
b11 b12
b21 b22

)
. (2)

In this case, we can define the calculation of them as follows:

A±B =

(
a11 ± b11 a12 ± b12
a21 ± b21 a22 ± b22

)
; (3)

AB =

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
. (4)

Let A′ denotes the transpose matrix of A:

A′ =

(
a11 a21
a12 a22

)
. (5)

In the main lectures, Prof. Poignard may let A⊤ denotes the transpose matrix, but I

prefer A′.

The general rules for matrix multiplication are explained as follows.

• Associative Law: (XY )Z = X(Y Z)

• Distributive Law: X(Y + Z) = XY +XZ

• (XY )′ = Y ′X ′

• (XY Z)′ = Z ′Y ′X ′

Also, the idempotent matrix is defined as follows.
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� �
Definition 2.1. If the matrix X ∈ Rn×n satisfies X2 = XX = X, X is an idem-

potent matrix. When X is a symmetric idempotent matrix, then X ′X = X.� �
2.2 Rank

The relationship of the rank and matrix is represented as follows:� �
Definition 2.2. The row(column) rank of matrix X ∈ Rn×k is the dimension of

the vector space that is spanned by its row(column) vectors.� �
In other words, we can check the rank(X) by counting the maximum numbers of linearly

independent row(column) vectors. For example, consider the following matrix D ∈ R3×4:

D =

1 2 0 1
2 4 1 3
0 0 3 3

 . (6)

Let us denote each row vector as d1 = (1 2 0 1), d2 = (2 4 1 3) and d3 = (0 0 3 3)

respectively.

c1d1 + c2d2 = 0 ⇔ c1 = c2 = 0. (7)

If above equation hold, then d1 and d2 are linearly independent. However, d1, d2 and d3

are linearly dependent because we obtain d3 = 3d2−6d1. Therefore, we have rank(D) =

2. Additionaly, let us denote each column vector as e1 = (1 2 0), e2 = (2 4 0), e3 = (0 1 3)

and e4 = (1 3 3) respectively.

c3e1 + c4e3 = 0 ⇔ c3 = c4 = 0. (8)

However, e1, e3 and e4 are lineary dependent. Generally, the raw rank and the column

rank are same value.

2.3 Trace

The trace of a square matrix X ∈ Rn×n is derived by the sum of its diagonal elements:

tr(X) =
k∑

j=1

xjj . (9)

Following results are shown.
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(a) tr(cX) = c(tr(X))

(b) tr(X ′) = tr(X)

(c) tr(X + Y ) = tr(X) + tr(Y )

(d) tr(XY ) = tr(Y X)

(e) x′x = tr(x′x) = tr(xx′) if x is a vector

2.4 Sums of Values

Denote a vector whose all elements are 1 as i ∈ Rn×1. Then, sum of the elements of a

vector y ∈ Rn×1 is represented as:

n∑
j=1

yj = i′y
1×n×n×1

. (10)

From this operation, we can rewrite the arithmetic mean of y as:

ȳ =
1

n

n∑
j=1

yj =
1

n
i′y. (11)

Consider the matrix X ∈ Rn×k:

X =


x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

. . .
...

xn1 xn1 · · · xnk

 . (12)

Then, we can represnt a design matrix X ′X by using its row vector xi = (xi1, xi2, . . . , xik)

and its transpose matrix x′
i
*1:

X ′X =
n∑

i=1

x′
ixi. (13)

These operations are necessary calculation when you estimate a regression model. I will

explain some conditions for the invertibility of this matrix later.

2.5 Inverse Matrix

If the square matrix X is the regular matrix, there is an inverse matrix of X.

*1 Greene(2011) denotes X′X by using its column vector formed by the transpose of the low vector.

Therefore, the row vector is represented as x′
i and we can rewrite X′X as X′X =

∑n
i=1 xix

′
i.

However, this confusing notation is not used in the main textbook, so we premise (13) unless

otherwise noted.
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� �
Definition 2.3. Suppose the case of matrix X ∈ Rn×n. If there is a matrix X−1

which introduces XX−1 = I, X−1 is called as an inverse matrix of X.� �
Suppose the case of A ∈ R2×2 in (1). The inverse matrix of A is calculated as follows:

A−1 =
1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
. (14)

When you want to find the inverse matrix X−1 ∈ Rn×n(n ≥ 3), the row reduction

method(行基本変形) and the cofactor expansion(余因子展開) are usually used. These

topics are explained in some of the mathematical textbooks such as Chiang and

Wainwright(2006) ”Fundamental Methods of Mathematical Economics(4th edition)”,

McGraw-Hill.

Finallly, following theorem is important.� �
Theorem 2.1. Following three conditions are equivalent:

• X is a regular matrix.

• The determinant of X is non-zero.

• The row vectors of X are linearly independent.� �
2.6 Patitioned Matrix

Sometimes, partitioning the matrix to make some groups of elements is useful. For

instance, we can make blocks of the elements of matrix X ∈ R4×4 as follows:

X =


x11 x12

x21 x22

x13 x14

x23 x24

x31 x32

x41 x42

x33 x34

x43 x44

 =

(
X11 X12

X21 X21

)

Suppose that the matrix Y ∈ R4×4 is patitioned like X. For these matricies X and Y ,

X ± Y =

(
X11 ± Y11 X12 ± Y12

X21 ± Y21 X22 ± Y22

)
, (15)

and

XY =

(
X11Y11 +X12Y21 X11Y12 +X12Y22

X21Y11 +X22Y21 X21Y12 +X22Y22

)
. (16)

are satisfied.
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2.7 Kronecker Products

Consider the matricies X = (xij) ∈ Rm×n and Y = (yij) ∈ Rp×q respectively. Then,

the Kronecker product is defined as:

X ⊗ Y = (xijY ) ∈ Rmp×nq. (17)

The extended form of (17) becomes:

X ⊗ Y =


x11Y x12Y · · · x1nY
x21Y x22Y · · · x2nY
...

...
. . .

...
xm1Y xm2Y · · · xmnY

 ∈ Rmp×nq. (18)

Thus, the (i, j)th partition of this matrix is represented, with the partitioned matrix, as

xijY . This definition of Kronecker product gives rise to the following results.� �
Theorem 2.2. The following results hold:

(a) X1X2 ⊗ Y1Y2 = (X1 ⊗ Y1)(X2 ⊗ Y2),

(b) (X ⊗ Y )−1 = X−1 ⊗ Y −1 if the inverse exists,

(c) (X ⊗ Y )′ = X ′ ⊗ Y ′,

(d) (X ⊗ Y )(X−1 ⊗ Y −1) = I.� �
2.8 Eigenvalue, Eigenvector, and Diagonalisation

2.8.1 Eigenvalue and Eigenvectors

Let a matrix A ∈ Rk×k be square. If a scalar λ and a vector c ∈ Rk×1, which is nor-

malised as c′c = 1, satisfy the following equation, then they are called as the eigenvalue

(characteristic root and the eigenvector (characteristic vector) respectively.

Ac = λc (19)

Rewrite above equation as:

Ac− λc = 0; (20)

(A− λI)c = 0. (21)

A necessary and sufficient condition to derive the non-zero solution with respect to λ is

the characteristic equation of A:
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det|A− λI| = 0. (22)

A solution of (22) are k eigenvalues including equal roots. each (λ1, λ2, ..., λk) corresponds

to eigenvalues (c1, c2, . . . , ck). Here, we consider a simple example. Suppose a matrix A

as:

A =

(
8 1
4 5

)
. (23)

Then, we can calculate characteristic roots as follows.

det|A− λI| = (8− λ)(5− λ)− 4

= 36− 13λ+ λ2

= (λ− 9)(λ− 4) = 0 (24)

. By solving above equation, we can derive λ1 = 9, λ2 = 4 (interchangable). We can

obtain λ1 by following calculation:(
−1 1
4 −4

)(
c1
c2

)
= 0. (25)

Thus, we can get c11 = c12 as follows:

c =

(
1/

√
2

1/
√
2

)
. (26)

2.8.2 Diagonalisation

A matrix A ∈ Rk×k has k distinct characteristic vectors (c1, c2, . . . , ck) and cor-

responding characteristic roots λ1, λ2, . . . , λk. Then, we can make a regular matrix

C = (c1, c2, . . . , ck). This matrix is the orthogonal matrix(直交行列:C−1 = C ′) which

diagonalises A.� �
Definition 2.4. diagonalis The diagonalisation of matrix A is defined as follows:

C ′AC = Λ = IΛ = C ′CΛ (27)� �
Λ is called as a diagonalised matrix whose diagonal elements consist of λ1, λ2, . . . , λk:

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk

 ∈ Rk×k (28)
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Next, we introduce an useful property of diagonalisation. Firstly, let’s check the

following results:

AA′ = (CΛC ′)(CΛC ′)

= CΛC ′CΛC ′

= CΛΛC ′

= CΛ2C ′. (29)

We can repeat to premultiply A or its transpose by AA′ of (29). This procedure is enable

us to apply to the case of non-natural numbers. (We are going to describe in more detail

of this procedure in the next subsection.)

2.9 Quadratic Form

Consider a symmetric matrix A ∈ Rk×k and a vector x ∈ Rk×1 . Then, the quadratic

form is written as follows:

q =
n∑

i=1

n∑
j=1

xixjaij = x′Ax (30)

Generally, q may be positive, negative, or zero. There are some matricies, however, for

which q will be positive regardress of x, and others for which q will always be negative.

For a given symmetric matrix A,� �
Definition 2.5. 　

1. If x′Ax > 0 for all nonzero x, then A is a positive definite matrix.

2. If x′Ax < 0 for all nonzero x, then A is a negative definite matrix.

3. If x′Ax ≥ 0 for all nonzero x, then A is a positive semidefinite matrix.

4. If x′Ax ≤ 0 for all nonzero x, then A is a negative semidefinite matrix.� �
This definition is useful for the optimisation methods. Although it might seem difficult to

check a matrix for definiteness, we can easily know it by using the spectral decomposition

of A, A = CΛC ′. Let y = C ′x. We can rewrite the quadratic form as follows:
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x′Ax = x′CΛC ′x

= y′Λy

=
n∑

i=1

λiy
2
i . (31)

If λi is positive for all i, then regardless of y and x, q will be positive. From this

calculation, we obtain the following theorem.� �
Theorem 2.3.

1. Let A be a symmetric matrix. If all the eigenvalues of A are positive (nega-

tive), then A is positive definite(negative definite).

2. If some of eigenvalues are zero, then A is positive(negative) semidefinite if the

reminder are positive(negative).

3. If A has both negative and positive eigenvalues, then A is indefinite.� �
Finally, the positive definiteness of a matrix gives rise to the following theorem.� �
Theorem 2.4. For a positive definite matrix A, whose eigenvalues are strictly

positive, Ar = CΛrC ′, for any real number, r.� �
The above theorem implies that we can easily find B such that Br = A by using the

diagonalisation. These methods and concepts are important to introduce the GLS esti-

mator.

3 Differentiation of Matrix

Consider the two vectors such as a ∈ Rn×1 and β ∈ Rn×1:

a =

a1
...
an

 and β =

β1

...
βn

 . (32)

Then, we can say a′β = a1β1 + a2β2 + · · · + anβn and the differentiation of the scalar

a′β can be described as follows:

∂a′β

∂β
=


∂(a1β1+a2β2+···+anβn)

∂β1

...
∂(a1β1+a2β2+···+anβn)

∂βn

 =

a1
...
an

 = a. (33)
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� �
Definition 3.1. The differentiation of the scalar a′β is given by:

∂a′β

∂β
= a. (34)� �

Next, let A ∈ Rn×n and β ∈ Rn×1.� �
Definition 3.2. The differentiation of the quadratic form β′Aβ is:

∂β′Aβ

∂β
= (A+A′)β. (35)� �

We only consider the case that β is 2×1 vector and A is 2× 2 matrix.

A =

(
a c
b d

)
and β =

(
β1

β2

)
. (36)

In this case, the quadratic form is:

β′Aβ = aβ2
1 + bβ1β2 + cβ1β2 + dβ2

1 . (37)

Then, derive the differentiation of β′Aβ as follows:

∂β′Aβ

∂β
=

(
∂(aβ2

1+bβ1β2+cβ1β2+dβ2
1)

∂β1

∂(aβ2
1+bβ1β2+cβ1β2+dβ2

1)
∂β2

)

=

(
2aβ1 + bβ2 + cβ2

bβ1 + cβ1 + 2dβ2

)
=

(
2a b+ c

b+ c 2d

)(
β1

β2

)
= [

(
a c
b d

)
+

(
a b
c d

)
]

(
β1

β2

)
= (A+A′)β. (38)

Especially, when A is symmetic, we can derive the following result:

∂β′Aβ

∂β
= (2A)β. (39)
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