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1 Review of Mapping

In this section, we refer to some concepts concerned with a mapping. The discussion in this section
takes place in the context of Euclidean spaces. A function f from S to T , which is denoted by
f : S → T , is a rule that associates with each element of S, one and only one element of T . The
set S is called the domain of the function f , and the set T its range. The graphical image is shown
below. Then, a continuous function at x ∈ S is defined as follows.

S T

w

x

y

z

a

b

c

d

Figure 1: Mapping Diagram of Relations between S and T

� �
Definition 1.1 (Continuous Function). Let f : S → T , where S ⊂ Rn and T ⊂ Rl. Then, a
function f is said to be continuous at x ∈ S if for all ε > 0, there exists δ > 0 such that y ∈ S
and d(x, y) < δ implies d(f(x), f(y)) < ε.� �
Note that d(x, y) indicates the distance between x and y in Rn, while d(f(x), f(y)) < ε indicates

the distance in Rl. intuitively, f is continuous at x if the value of f at any point y that is “close”
to x is a good approximation of the value of f at x.

In the following, we show an example which typifies a function continuous everywhere except
some point. The function f : R → R given by

f(x) =

{
0, if x ≤ 0;

1, otherwise,
(1)

is continuous everywhere except at x = 0. At x = 0, every open ball B(x, δ) with center x and
radius δ > 0 contains at least one point y > 0. At all such points, f(y) = 1 ̸= 0 = f(x), and this
approximation does not get better, no matter how close y gets to x (or no matter how small we
take δ to be).

2 Review of Optimisation

In this section, we review some concepts concerned with optimisation.

2.1 Hessian

Consider a case that we aim to obtain a point x ∈ R which maximises or minimises a function
y = f(x) in an open interval U ∈ R. In this case, if x0 ∈ R attains the maximum or minimum, we
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Figure 2: Graph of f(x)

have the following first order condition at the beginning:

df(x)

dx

∣∣∣
x=x0

= 0. (2)

In addition, when we consider whether the optimum is a maximum or a minimum, the sufficient
condition for the optimum becomes as follows:

d2f(x)

dx2

∣∣∣
x=x0

< 0 for a maximum; (3)

d2f(x)

dx2

∣∣∣
x=x0

> 0 for a minimum. (4)

Here consider a function y = g(x)(∈ R) where x = (x1, . . . , xn)
′ ∈ Rn, denoted as g : Rn → R.

If an x0 = (x0
1, . . . , x

0
n)

′ ∈ Rn maximises or minimises g(x), we apply the following theorem.� �
Theorem 2.1. If a function g : Rn → R is maximised (or minimised) at the point x0 =
(x0

1, . . . , x
0
n), then the following equation holds:

∇xg(x)
∣∣∣
x=x0

=


∂g(x0)
∂x1
...

∂g(x0)
∂xn

 = 0. (5)

� �
Moreover, we use the following Hessian matrix to discern a maximum and a minimum.� �
Definition 2.1 (Hessian matrix). A Hessian matrix of a function g : Rn → R is defined as
follows:

H = ∇2
xx′g(x) =


∂2g(x)
∂x1∂x1

· · · ∂2g(x)
∂x1∂xn

...
. . .

...
∂2g(x)
∂xn∂x1

· · · ∂2g(x)
∂xn∂xn


� �
Assume that gx1(x

0) = gx2(x
0) = · · · = gxn(x

0) = 0 holds, where gxi
(x) for i ∈ {1, . . . , n} denotes

the partial derivative of g(x) with respect to xi. The following theorem is a way to distinguish
whether x attains a maximum (or a minimum) or not.
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� �
Theorem 2.2 (Definiteness and Hessian Matrix). Suppose that a smooth function g : Rn → R
satisfies gx1(x

0) = · · · = gxn(x
0) = 0. Then, we can confirm that if:

1. H is a negative definite matrix, then x0 is a maximum point.

2. H is a positive definite matrix, then x0 is a minimum point.� �
As for the positiveness or negativeness of a matrix, we have the following theorem.� �
Theorem 2.3 (Definiteness of a Matrix). A necessary and sufficient condition for a matrix
A ∈ Rn×n to be positive definite is that gi > 0 for all i ∈ {1, . . . , n} where

gi =

∣∣∣∣∣∣∣
a11 · · · a1i
... · · · ...
ai1 · · · aii

∣∣∣∣∣∣∣ . (6)

Moreover, a necessary and sufficient condition for a matrix A ∈ Rn×n to be negative definite
is that g1 < 0, g2 > 0, g3 < 0, and so on.� �

For example, in the case of f(x, y) = x2 + 4xy + 5y2 − 2x − 8y + 5, we have ∂xf = 2x + 4y − 2
and ∂yf = 4x+ 10y − 8. By solving ∂xf = ∂yf = 0, we obtain an optimum point (x, y) = (−3, 2).
Also, the Hessian matrix is given as follows:

H = ∇2
θ,θ′f(x, y) (7)

=

(
2 4
4 10

)
,

where θ = (x, y)′ ∈ R2.
Since |H| = 20− 16 > 0 and ∂2

xx′f = 2 > 0, (x, y) = (−3, 2) is a minimum point. We can analyse
an optimum of a multivariable function for more variables in the same manner.

2.2 Optimisation: Jacobian

If a function g : Rm+n → Rn satisfies

g(y,x) =


g1(y,x) = k;

...

gn(y,x) = k,

(8)

where k is a constant and x ∈ Rn, y ∈ Rm, we call the function g ∈ Rm an implicit function.
Then, a matrix called Jacobian matrix is defined as follows:
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� �
Definition 2.2 (Jacobian Matrix). Suppose a function g : Rm+n → Rn is an implicit function
mentioned above. Then, the Jacobian matrix of the function g(y,x) with respect to y ∈ Rm

becomes as follows:

J = (∇yg(·))′ =


∂g1
∂y1

· · · ∂g1
∂ym

...
. . .

...
∂gm
∂y1

· · · ∂gm
∂ym

 . (9)

� �
To conduct some optimisation methods such as Lagrange multiplier method, we need to know
whether we can express each element of yi in y for i ∈ {1, . . . ,m} as a unique function of x ∈ Rn

explicitly as follows:

y = ϕ(x) =


y1 = ϕ1(x);

...

ym = ϕm(x).

(10)

Roughly speaking, under some conditions, there exists a unique solution satisfying (10) if the
inverse matrix of the Jacobian matrix exists.

3 Large Order and Small Order

In this section, we review some definitions of small and large order.

3.1 Convergence of a Non-stochastic Sequence of Numbers

First of all, we begin with some definitions regarding non-stochastic sequences of numbers.� �
Definition 3.1 (Convergence of a Sequence in the Case of Non-stochastic Numbers). (1) A

sequence of nonrandom numbers {an : n ∈ Z++ = N}(, where Z++ = N represents the set
of all (strictly) positive integer or natural number,) converges to a number a ∈ R if for all
ε > 0 there exists a number nε such that |an − a| < ε if n > nε. In this case, we write
an → a as n → ∞.

(2) A sequence {an : n ∈ Z++} is bounded if and only if there exists some b < ∞ such that
|an| ≤ b for all n ∈ Z++. Otherwise, we say that the sequence {an : n ∈ Z++} is unbounded.� �

These definitions apply to vectors and matrices element by element. A well–known example of a
sequence satisfying the first statement is the case an = 1/n for n ∈ Z++. We can write an → 0.
The sequence is also bounded since |an| ≤ 1 for all n ∈ Z++.

3.2 Large Order and Small Order

Next, we introduce the definition of “Large Order and Small Order” in the following.
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� �
Definition 3.2 (Large Order and Small Order). (1) A sequence {an : n ∈ Z++} is O(nλ) (at

most of order nλ) if n−λan is bounded, that is, if there exists a number b < ∞ such that
|n−λan| ≤ b for all n ∈ Z++. When λ = 0, the sequence is bounded (as you can confirm
the fact from the definition of boundedness), and in this situation we also write an = O(1).

(2) A sequence {an : n ∈ Z++} is o(nλ) if n−λan → 0. When λ = 0, an converges to zero, and
we also write an = o(1).� �

From these definition, it is obvious that if an = o(nλ), then an = O(nλ); in particular, if an = o(1),
then an = O(1). In addition, if each element of a sequence of vectors or matrices is O(nλ), we say
that the sequence of vectors or matrices is O(nλ), and similarly for o(nλ).

As for the sequence {an = 1/n : n ∈ Z++}, an = o(1) since an converges to zero as n goes to ∞,
which also indicates an = O(1). We show, in the following, another interpretation of this sequence.
an = 1/n satisfies the following relation:

1

n
= O

(
1

n

)
= o

(
1

n1−α

)
, (11)

for all α > 0. When α = 0.5, from the above equation,

1

n
= o

(
1

n0.5

)
= o

(
1√
n

)
. (12)

holds. The intuitive understanding of what o
(

1√
n

)
means becomes as follows: if an = o

(
1√
n

)
,

then an is small in the sense that
√
nan converges to zero as n goes to ∞.

4 Basic Convergence Theory

In this section, we introduce some concepts of “convergence.” Before confirming the definitions,
we review the definition of probability space.� �
Remark 4.1 (A Probability Space). When we consider a trial or a random experiment, a
probability space (Ω,F ,P) can be constructed, where

• Ω stands for a sample space, i.e., the collection of all possible outcomes of the trial, or
experiment.

• F stands for a subset of Ω containing Ω, ∅ (an empty set which have no elements), in
other words, a sigma-algebra of events.

• P, denoted a probability measure on F and satisfies P(Ω) = 1.

Then, the probability of a set can be seen as a function from Ω to R, i.e., P : Ω → R.� �
Let us explains the above remark by considering a case of tossing a single dice. We can define
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Ω = {ω1, ω2, ω3, ω4, ω5, ω6}, where

ω1 : after tossing a dice, we observe that the face showing on the dice equals 1;

ω2 : after tossing a dice, we observe that the face showing on the dice equals 2;

ω3 : after tossing a dice, we observe that the face showing on the dice equals 3;

ω4 : after tossing a dice, we observe that the face showing on the dice equals 4;

ω5 : after tossing a dice, we observe that the face showing on the dice equals 5;

ω6 : after tossing a dice, we observe that the face showing on the dice equals 6,

and a subset F which consists of all possible subsets of Ω. An example of a set F can be considered
as {ω1, ω3, ω5}, implying that after tossing a dice, we observed that the faces showing on the each
trial are odd numbers, i.e. 1, 3, and 5.” Then, if

P(ω1 ∈ F) = · · · = P(ω6 ∈ F) =
1

6
, (13)

holds, this equation implies that “the probability that after throwing a dice we observe that the
face showing on the dice equals 1 (, 2, and so on) is equal for all ω ∈ Ω.” Similarly,

Prob(Ω) = Prob({ω1, ω2, ω3, ω4, ω5, ω6}) = 1 (14)

indicates that “after throwing a dice the face on the dice surely shows a natural number from
one to six.” Eq. (13) or (14) represent the assotiation of an outcome with a real number, i.e.,
P : Ω → R. We can construct a random variable in a same manner. A random variable X is a
function from Ω to R, that is, X : Ω → R. In the above example, for an outcome ω ∈ Ω, we can
consider a random variable X : Ω → R taking a value as follows:

X(ω) =



1, if ω = ω1;

2, if ω = ω2;

3, if ω = ω3;

4, if ω = ω4;

5, if ω = ω5;

6, if ω = ω6.

4.1 Convergence in Probability

First of all, we show the definition of convergence in probability as below.
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� �
Definition 4.1 (Convergence in Probability). (1) A sequence of random variables {Xn : n ∈

Z++} convergences in probability to a constant a if, for all ε > 0,

lim
n→∞

Prob (|Xn − a| > ε) = 0 or plim
n→∞

Xn = a. (15)

We write Xn
p−→ a and say that a is the probability limit (plim) of Xn.

(2) In the special case where a = 0, we also say that {Xn} is op(1). We also write Xn = op(1)

or Xn
p−→ 0.

(3) A sequence of random variables {Xn : n ∈ Z++} is convergences in probability if and
only if for every ε > 0, there exists a bε < ∞ and an integer nε such that

Prob (|Xn| ≥ bε) < ε for all n ≥ nε. (16)

We write Xn = Op(1).� �
This concept is an important one in understanding the (Weak) Law of Large Numbers, which we
will learn in later TA session.

Consider an example of tossing a (fair) coin, where the probability that the face showing on
the coin becomes head equals the one that of tail. We can construct a probability space (Ω,F ,P)
as follows:

Ω = {head, tail} =: {ω1, ω2}, F := {Ω, {ω1}, {ω2}, ∅}, (17)

and

P(ω) := Prob(ω) =

{
1
2

if ω = ω1;
1
2

if ω = ω2.
(18)

Then, for n ∈ Z++, we define a random variable Xn(ω) depending on whether the coin shows
head/tail as follows:

Xn(ω) =

{
1, if the face of the coin shows tail at the nth trial;

0, if the face of the coin shows head at the nth trial.
(19)

Also, set a random variable X(ω) as follows:

X(ω) =

{
1, if the face of the coin shows head;

0, if the face of the coin shows tail.
(20)

Then, it is clear that for all ω ∈ Ω, |Xn(ω)−X(ω)| holds at any trial. Therefore, for all η ∈ (0, 1)
and for all n ∈ {1, 2, . . .}, we have

Prob(|Xn(ω)−X(ω)| > η) = 1. (21)

Thus, Xn(ω) does not converge to X(ω).
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4.2 Almost Surely Convergence

Next, we see the definition of almost surely convergence.� �
Definition 4.2 (Almost Surely Convergence). A sequence of random variabels {Xn ∈ R : n ∈
Z++} converges almost surely to X if and only if for all ω ∈ Ω which do not belong to
events of probability 0,

Prob ({ω; Xn → X as n → ∞}) = 1, (22)

or

Prob
(
lim
n→∞

Xn → X
)
= 1. (23)

We write Xn
a.s.−−→ X.� �

An example is described below. Given a probabilty space (Ω,F ,P), consider a sequence of
random variable {Xn, n ∈ Z++} as follows:

Xn : Ω → R, Xn(ω) = 1 +
1

n
. (24)

Note that this random variable does not change for the outcome occurring from a sample space.
Then, for all ω ∈ Ω,

lim
n→∞

Xn(ω) = lim
n→∞

(
1 +

1

n

)
= 1 (25)

holds. Therefore,

Prob ({ω; Xn → 1 as n → ∞}) = Prob
(
lim
n→∞

Xn → 1
)
= 1 (26)

also holds for all ω ∈ Ω, which implies that Xn converges almost surely to X.

In the Case of Tossing a Dice
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4.3 Convergence in Distribution

Here we check the definition of convergence in probability.� �
Definition 4.3 (Convergences in Distribution). A sequence of random variabels {Xn ∈ R : n ∈
Z++} converges in distribution to a continuous random variable X if and only if

Fn(ξ) → F (ξ) as n → ∞, (27)

or

lim
n→∞

Fn(X) = F (X), (28)

for all ξ ∈ R, where Fn is the cumulative distribution function (c.d.f.) of Xn and F is the

(continuous) c.d.f. of X, and both c.d.f.s are continuous at ξ ∈ R. We write Xn
d−→ X.� �

We will learn the application of this convergence, Central Limit Theorem, in the later class of
Econometrics I and TA session.

The following example displays an example of the convergence in distribution. Given a proba-
bilty space (Ω,F ,P), let {Xn} and X be sequences given as follows:

Xn : Ω → R, Xn(ω) =
1

n
; X = 0. (29)

Then, the cumulative distribution function of Xn and that of X are assumed to be take the
following form respectively:

Fn(x) =

{
1 if x ≥ 1

n
;

0 otherwise.
F (x) =

{
1 if x ≥ 0;

0 otherwise.
(30)

In this case, we can confirm that for all X ∈ R/{0}, Fn(x) satisfies the following equation

lim
n→∞

Fn(X) = F (X). (31)

Hence, Xn converges in distribution to X.

In the Case of Tossing a Dice
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4.4 Convergence in Lp

� �
Definition 4.4 (Convergences in Lp). A sequence of random variabels {Xn ∈ R : n ∈ Z++}
converges in Lp to X if and only if for all n ∈ Z++, E[|Xn|p] < ∞ and

E[|Xn −X|p] → 0 as n → ∞ (32)

or (in another notation,)

lim
n→∞

E[|Xn −X|p] = 0 (33)

holds. We write Xn
Lp

−→ X. Particularly, when n = 2, we say that Xn converges in mean
square to X.� �
Let us consider an example of tossing a (fair) coin. Under the same assumption of a probability

(or sample) space mentioned above, define a sequence of random variable Xn for n ∈ Z++ as follows:

Xn(ω) =: Xn =

{
1, if ω = ω1 with probability p;

0, if ω = ω2 with probability 1 − p.
(34)

In this case, this sequence of random variables becomes a sequence of a Bernoulli random variable.
Then, we denote the sum of the sequence Xn from 1 to n as X:

X :=
1

n
(X1 + · · ·+Xn) . (35)

The expectation and variance of each Xn for n ∈ Z++ becomes:

E [Xn] = 1 · p+ 0 · (1− p) = p;

V [Xn] = E
[
|Xn − E [Xn]|2

]
= p(1− p).

Assuming that each random variable is independent with each other, a similar calculation results
in:

E [X] = E
[
X1 + · · ·+Xn

n

]
=

E [X1] + · · ·+ E [Xn]

n
= p;

V [X] = V
[
X1 + · · ·+Xn

n

]
=

1

n2
V [X1 + · · ·+Xn] =

1

n2

{
V [X1] + · · ·+ V [Xn]

}
=

1

n
p(1− p).

On the other hand, we have

V [X] = E
[
|X − E [X]|2

]
= E

[
|X − p|2

]
.

Therefore, E[|X − p|2] = 1

n
p(1− p) holds, and

lim
n→∞

E
[
|X − p|2

]
= lim

n→∞

1

n
p(1− p) = 0, (36)

also holds, which indicates that X converges in L2 to p.
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4.5 Relation of Convergences

The following theorem shows significant relations of these four convergences in understanding some
concepts of econometric theory such as LLN or CLT.� �
Theorem 4.1 (Relations of the Convergences). a.s. convergence or Lp convergence implies
convergence in probability, and the latter implies convergence in distribution.� �

We can summerize the above relations in the following graphical image:

a.s.

in Lp in p

in d

Figure 3: Image of the Relation between the Convergences

Then, when considering some “asymptotic convergence (in distribution),” which will be ex-
plained in a later class of the Econometrics I or TA session, the following theorems become key
tools to prove some asymptotic property.� �
Theorem 4.2 (Continuous Mapping Theorem). Let {Xn ∈ Rk : n ∈ Z++} be sequence of

k × 1 random vectors such that Xn
d−−−−→

n → ∞
X. If g : Rk → Rj is a continuous function, then

g(Xn)
d−−−−→

n → ∞
g(X).� �� �

Theorem 4.3 (Slutsky’s Theorem). Let g : Rk → Rj be a function continuous at some point
c ∈ Rk that does not depend on n. Let {Xn ∈ Rk : n ∈ Z++} be sequence of k × 1 random

vectors such that Xn
p−→ c. Then, g(Xn)

p−→ g(X) as n → ∞. In other words,

plim
n→∞

g(Xn) = g

(
plim
n→∞

Xn

)
, (37)

if g(·) is continuous at plim Xn.� �
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