Econometrics I

TA Session 2

Jukina HATAKEYAMA [∗]

April 25, 2024

Contents

[∗]E-mail: u868710a@ecs.osaka-u.ac.jp

1 Review of Mapping

In this section, we refer to some concepts concerned with a mapping. The discussion in this section takes place in the context of Euclidean spaces. A function *f* from *S* to *T*, which is denoted by $f: S \to T$, is a rule that associates with each element of *S*, one and only one element of *T*. The set *S* is called the *domain* of the function *f*, and the set *T* its *range*. The graphical image is shown below. Then, a *continuous* function at $x \in S$ is defined as follows.

Figure 1: Mapping Diagram of Relations between *S* and *T*

Definition 1.1 (Continuous Function). Let $f : S \to T$, where $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^l$. Then, a function *f* is said to be *continuous* at $x \in S$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $y \in S$ and $d(x, y) < \delta$ implies $d(f(x), f(y)) < \varepsilon$.

 $\sqrt{2\pi}$

✒ ✑ Note that $d(x, y)$ indicates the distance between *x* and *y* in \mathbb{R}^n , while $d(f(x), f(y)) < \varepsilon$ indicates the distance in \mathbb{R}^l . intuitively, f is continuous at x if the value of f at any point y that is "close" to *x* is a good approximation of the value of *f* at *x*.

In the following, we show an example which typifies a function continuous everywhere except some point. The function $f: \mathbb{R} \to \mathbb{R}$ given by

$$
f(x) = \begin{cases} 0, & \text{if } x \le 0; \\ 1, & \text{otherwise,} \end{cases}
$$
 (1)

is continuous everywhere except at $x = 0$. At $x = 0$, every open ball $B(x, \delta)$ with center x and radius $\delta > 0$ contains at least one point $y > 0$. At all such points, $f(y) = 1 \neq 0 = f(x)$, and this approximation does not get better, no matter how close *y* gets to *x* (or no matter how small we take δ to be).

2 Review of Optimisation

In this section, we review some concepts concerned with optimisation.

2.1 Hessian

Consider a case that we aim to obtain a point $x \in \mathbb{R}$ which maximises or minimises a function *y* = $f(x)$ in an open interval *U* ∈ R. In this case, if x ⁰ ∈ R attains the maximum or minimum, we

$$
f(x)
$$
\n
$$
B(x, \delta) = \begin{cases}\n1 & f(x) = 1 \\
\hline\n\frac{1}{\delta \cdot 0} & \text{if } x > 1\n\end{cases}
$$
\n
$$
f(x) = 0
$$
\n
$$
x
$$

Figure 2: Graph of $f(x)$

have the following first order condition at the beginning:

 $\sqrt{2}$

 \overline{a}

$$
\left. \frac{df(x)}{dx} \right|_{x=x^0} = 0. \tag{2}
$$

In addition, when we consider whether the optimum is a maximum or a minimum, the sufficient condition for the optimum becomes as follows:

$$
\frac{d^2f(x)}{dx^2}\Big|_{x=x^0} < 0 \quad \text{for a maximum};\tag{3}
$$

$$
\left. \frac{d^2 f(x)}{dx^2} \right|_{x=x^0} > 0 \quad \text{for a minimum.} \tag{4}
$$

Here consider a function $y = g(\mathbf{x}) \in \mathbb{R}$ where $\mathbf{x} = (x_1, \dots, x_n)' \in \mathbb{R}^n$, denoted as $g: \mathbb{R}^n \to \mathbb{R}$. If an $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)' \in \mathbb{R}$ n ⁿ maximises or minimises $g(\mathbf{x})$, we apply the following theorem.

Theorem 2.1. If a function $g: \mathbb{R}^n \to \mathbb{R}$ is maximised (or minimised) at the point $\mathbf{x}^0 =$ (x_1^0, \ldots, x_n^0) , then the following equation holds:

$$
\nabla_{\mathbf{x}} g(\mathbf{x})\Big|_{\mathbf{x}=\mathbf{x}^0} = \begin{pmatrix} \frac{\partial g(\mathbf{x}^0)}{\partial x_1} \\ \vdots \\ \frac{\partial g(\mathbf{x}^0)}{\partial x_n} \end{pmatrix} = \mathbf{0}.
$$
 (5)

Moreover, we use the following *Hessian matrix* to discern a maximum and a minimum.

Definition 2.1 (Hessian matrix). A Hessian matrix of a function $g: \mathbb{R}^n \to \mathbb{R}$ is defined as follows:

 $\left\langle \frac{1}{2} \right\rangle$, and the contract of the c

$$
H = \nabla_{\mathbf{x}\mathbf{x}'}^2 g(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 g(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 g(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 g(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 g(\mathbf{x})}{\partial x_n \partial x_n} \end{pmatrix}
$$

 $\left(\frac{1}{2}\right)^{n}$ $\left(\frac{1}{2}\right)^{n}$ Assume that $g_{x_1}(\mathbf{x}^0) = g_{x_2}(\mathbf{x}^0) = \cdots = g_{x_n}(\mathbf{x}^0) = 0$ holds, where $g_{x_i}(\mathbf{x})$ for $i \in \{1, \ldots, n\}$ denotes the partial derivative of $g(\mathbf{x})$ with respect to x_i . The following theorem is a way to distinguish whether **x** attains a maximum (or a minimum) or not.

Theorem 2.2 (Definiteness and Hessian Matrix). Suppose that a smooth function $g: \mathbb{R}^n \to \mathbb{R}$ satisfies $g_{x_1}(\mathbf{x}^0) = \cdots = g_{x_n}(\mathbf{x}^0) = 0$. Then, we can confirm that if:

 $\sqrt{2\pi}$

 $\left\langle \frac{1}{2} \right\rangle$, and the contract of $\left\langle \frac{1}{2} \right\rangle$, $\left\langle \frac{1}{2} \right\rangle$,

 $\sqrt{2\pi}$

- 1. *H* is a negative definite matrix, then \mathbf{x}^0 is a maximum point.
- 2. *H* is a positive definite matrix, then \mathbf{x}^0 is a minimum point.

As for the positiveness or negativeness of a matrix, we have the following theorem.

Theorem 2.3 (Definiteness of a Matrix)**.** A necessary and sufficient condition for a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ to be positive definite is that $g_i > 0$ for all $i \in \{1, \ldots, n\}$ where

$$
g_i = \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & \cdots & \vdots \\ a_{i1} & \cdots & a_{ii} \end{vmatrix} . \tag{6}
$$

Moreover, a necessary and sufficient condition for a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ to be negative definite is that $g_1 < 0$, $g_2 > 0$, $g_3 < 0$, and so on.

 $\left\langle \frac{1}{2} \right\rangle$, and the contract of the c For example, in the case of $f(x, y) = x^2 + 4xy + 5y^2 - 2x - 8y + 5$, we have $\partial_x f = 2x + 4y - 2$ and $\partial_y f = 4x + 10y - 8$. By solving $\partial_x f = \partial_y f = 0$, we obtain an optimum point $(x, y) = (-3, 2)$. Also, the Hessian matrix is given as follows:

$$
H = \nabla_{\theta,\theta'}^2 f(x, y)
$$

= $\begin{pmatrix} 2 & 4 \\ 4 & 10 \end{pmatrix}$, (7)

where $\theta = (x, y)' \in \mathbb{R}^2$. Since $|H| = 20 - 16 > 0$ and $\partial_{xx'}^2 f = 2 > 0$, $(x, y) = (-3, 2)$ is a minimum point. We can analyse an optimum of a multivariable function for more variables in the same manner.

2.2 Optimisation: Jacobian

If a function $\mathbf{g} \colon \mathbb{R}^{m+n} \to \mathbb{R}^n$ satisfies

$$
\mathbf{g}(\mathbf{y}, \mathbf{x}) = \begin{cases} g_1(\mathbf{y}, \mathbf{x}) = k; \\ \vdots \\ g_n(\mathbf{y}, \mathbf{x}) = k, \end{cases}
$$
 (8)

where *k* is a constant and $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, we call the function $\mathbf{g} \in \mathbb{R}^m$ an *implicit function*. Then, a matrix called *Jacobian matrix* is defined as follows:

Definition 2.2 (Jacobian Matrix). Suppose a function $\mathbf{g} : \mathbb{R}^{m+n} \to \mathbb{R}^n$ is an implicit function mentioned above. Then, **the Jacobian matrix** of the function $g(y, x)$ with respect to $y \in \mathbb{R}^m$ becomes as follows:

 $\sqrt{2\pi}$

$$
J = (\nabla_{\mathbf{y}} \mathbf{g}(\cdot))' = \begin{pmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial y_1} & \cdots & \frac{\partial g_m}{\partial y_m} \end{pmatrix}.
$$
 (9)

To conduct some optimisation methods such as Lagrange multiplier method, we need to know whether we can express each element of y_i in **y** for $i \in \{1, ..., m\}$ as a unique function of $\mathbf{x} \in \mathbb{R}^n$ explicitly as follows:

✒ ✑

$$
\mathbf{y} = \phi(\mathbf{x}) = \begin{cases} y_1 = \phi_1(\mathbf{x}); \\ \vdots \\ y_m = \phi_m(\mathbf{x}). \end{cases}
$$
(10)

Roughly speaking, under some conditions, there exists a unique solution satisfying (10) if the inverse matrix of the Jacobian matrix exists.

3 Large Order and Small Order

In this section, we review some definitions of small and large order.

3.1 Convergence of a Non-stochastic Sequence of Numbers

 $\sqrt{2}$ First of all, we begin with some definitions regarding non-stochastic sequences of numbers.

- **Definition 3.1** (Convergence of a Sequence in the Case of Non-stochastic Numbers)**.** (1) A sequence of nonrandom numbers $\{a_n : n \in \mathbb{Z}_{++} = \mathbb{N}\}\$, where $\mathbb{Z}_{++} = \mathbb{N}$ represents the set of all (strictly) positive integer or natural number,) converges to a number $a \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists a number n_{ε} such that $|a_n - a| < \varepsilon$ if $n > n_{\varepsilon}$. In this case, we write $a_n \to a$ as $n \to \infty$.
- (2) A sequence $\{a_n : n \in \mathbb{Z}_{++}\}\$ is *bounded* if and only if there exists some $b < \infty$ such that *|a*_{*n*} | ≤ *b* for all $n \in \mathbb{Z}_{++}$. Otherwise, we say that the sequence $\{a_n : n \in \mathbb{Z}_{++}\}$ is *unbounded*.

✒ ✑ These definitions apply to vectors and matrices element by element. A well–known example of a sequence satisfying the first statement is the case $a_n = 1/n$ for $n \in \mathbb{Z}_{++}$. We can write $a_n \to 0$. The sequence is also bounded since $|a_n| \leq 1$ for all $n \in \mathbb{Z}_{++}$.

3.2 Large Order and Small Order

Next, we introduce the definition of "Large Order and Small Order" in the following.

Definition 3.2 (Large Order and Small Order). (1) A sequence $\{a_n : n \in \mathbb{Z}_{++}\}\$ is $O(n^{\lambda})$ (at most of order n^{λ} if $n^{-\lambda}a_n$ is bounded, that is, if there exists a number $b < \infty$ such that $|n^{-\lambda}a_n|$ ≤ *b* for all $n \in \mathbb{Z}_{++}$. When $\lambda = 0$, the sequence is bounded (as you can confirm the fact from the definition of boundedness), and in this situation we also write $a_n = O(1)$.

 $\sqrt{2\pi}$

(2) A sequence $\{a_n : n \in \mathbb{Z}_{++}\}\$ is $o(n^{\lambda})$ if $n^{-\lambda}a_n \to 0$. When $\lambda = 0$, a_n converges to zero, and we also write $a_n = o(1)$.

✒ ✑ From these definition, it is obvious that if $a_n = o(n^{\lambda})$, then $a_n = O(n^{\lambda})$; in particular, if $a_n = o(1)$, then $a_n = O(1)$. In addition, if each element of a sequence of vectors or matrices is $O(n^{\lambda})$, we say that the sequence of vectors or matrices is $O(n^{\lambda})$, and similarly for $o(n^{\lambda})$.

As for the sequence $\{a_n = 1/n : n \in \mathbb{Z}_{++}\}, a_n = o(1)$ since a_n converges to zero as n goes to ∞ , which also indicates $a_n = O(1)$. We show, in the following, another interpretation of this sequence. $a_n = 1/n$ satisfies the following relation:

$$
\frac{1}{n} = O\left(\frac{1}{n}\right) = o\left(\frac{1}{n^{1-\alpha}}\right),\tag{11}
$$

for all $\alpha > 0$. When $\alpha = 0.5$, from the above equation,

$$
\frac{1}{n} = o\left(\frac{1}{n^{0.5}}\right) = o\left(\frac{1}{\sqrt{n}}\right). \tag{12}
$$

holds. The intuitive understanding of what $o\left(\frac{1}{\sqrt{2}}\right)$ $\left(\frac{1}{n}\right)$ means becomes as follows: if $a_n = o\left(\frac{1}{\sqrt{n}}\right)$ $\frac{1}{n}\biggr),$ then a_n is small in the sense that $\sqrt{n}a_n$ converges to zero as *n* goes to ∞ .

4 Basic Convergence Theory

 $\sqrt{2}$

In this section, we introduce some concepts of "convergence." Before confirming the definitions, we review the definition of probability space.

Remark 4.1 (A Probability Space)**.** When we consider a trial or a random experiment, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ can be constructed, where

- Ω stands for a sample space, i.e., the collection of all possible outcomes of the trial, or experiment.
- *F* stands for a subset of Ω containing Ω , \emptyset (an empty set which have no elements), in other words, a sigma-algebra of events.
- P, denoted a probability measure on $\mathcal F$ and satisfies $\mathbb P(\Omega) = 1$.

Then, the probability of a set can be seen as a function from Ω to \mathbb{R} , i.e., $\mathbb{P} \colon \Omega \to \mathbb{R}$.

 $\left(\frac{1}{2}\right)^{n}$ Let us explains the above remark by considering a case of tossing a single dice. We can define

 $\Omega = {\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6}$, where

 ω_1 : after tossing a dice, we observe that the face showing on the dice equals 1; ω_2 : after tossing a dice, we observe that the face showing on the dice equals **2**; ω_3 : after tossing a dice, we observe that the face showing on the dice equals **3**; ω_4 : after tossing a dice, we observe that the face showing on the dice equals 4; ω_5 : after tossing a dice, we observe that the face showing on the dice equals 5;

 ω_6 : after tossing a dice, we observe that the face showing on the dice equals **6***,*

and a subset $\mathcal F$ which consists of all possible subsets of Ω . An example of a set $\mathcal F$ can be considered as $\{\omega_1, \omega_3, \omega_5\}$, implying that after tossing a dice, we observed that the faces showing on the each trial are odd numbers, i.e. 1, 3, and 5." Then, if

$$
P(\omega_1 \in \mathcal{F}) = \dots = P(\omega_6 \in \mathcal{F}) = \frac{1}{6},\tag{13}
$$

holds, this equation implies that "the probability that after throwing a dice we observe that the face showing on the dice equals 1 (, 2, and so on) is equal for all $\omega \in \Omega$." Similarly,

$$
Prob(\Omega) = Prob(\{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}) = 1
$$
\n(14)

indicates that "after throwing a dice the face on the dice surely shows a natural number from one to six." Eq. (13) or (14) represent the assotiation of an outcome with a real number, i.e., $\mathbb{P}: \Omega \to \mathbb{R}$. We can construct a random variable in a same manner. A random variable X is a function from Ω to \mathbb{R} , that is, $X: \Omega \to \mathbb{R}$. In the above example, for an outcome $\omega \in \Omega$, we can consider a random variable $X: \Omega \to \mathbb{R}$ taking a value as follows:

$$
X(\omega) = \begin{cases} 1, & \text{if } \omega = \omega_1; \\ 2, & \text{if } \omega = \omega_2; \\ 3, & \text{if } \omega = \omega_3; \\ 4, & \text{if } \omega = \omega_4; \\ 5, & \text{if } \omega = \omega_5; \\ 6, & \text{if } \omega = \omega_6. \end{cases}
$$

4.1 Convergence in Probability

First of all, we show the definition of **convergence in probability** as below.

Definition 4.1 (Convergence in Probability). (1) A sequence of random variables $\{X_n : n \in \mathbb{R}\}$ \mathbb{Z}_{++} **} convergences in probability** to a constant *a* if, for all $\varepsilon > 0$,

 $\sqrt{2\pi}$

$$
\lim_{n \to \infty} \text{Prob} \left(|X_n - a| > \varepsilon \right) = 0 \quad \text{or} \quad \lim_{n \to \infty} X_n = a. \tag{15}
$$

We write $X_n \stackrel{p}{\to} a$ and say that *a* is the **probability limit (plim)** of X_n .

- (2) In the special case where $a = 0$, we also say that $\{X_n\}$ is $o_p(1)$. We also write $X_n = o_p(1)$ or $X_n \stackrel{p}{\to} 0$.
- (3) A sequence of random variables $\{X_n : n \in \mathbb{Z}_{++}\}\$ is **convergences in probability** if and only if for every $\varepsilon > 0$, there exists a $b_{\varepsilon} < \infty$ and an integer n_{ε} such that

$$
\text{Prob}\left(|X_n| \ge b_{\varepsilon}\right) < \varepsilon \quad \text{for all} \quad n \ge n_{\varepsilon}.\tag{16}
$$

We write $X_n = O_p(1)$.

This concept is an important one in understanding the (Weak) Law of Large Numbers, which we will learn in later TA session.

✒ ✑

Consider an example of tossing a (fair) coin, where the probability that the face showing on the coin becomes head equals the one that of tail. We can construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ as follows:

$$
\Omega = {\text{head}, \text{tail}} =: {\omega_1, \omega_2}, \quad \mathcal{F} := {\Omega, {\omega_1}, {\omega_2}, \emptyset}, \tag{17}
$$

and

$$
\mathbb{P}(\omega) := \text{Prob}(\omega) = \begin{cases} \frac{1}{2} & \text{if } \omega = \omega_1; \\ \frac{1}{2} & \text{if } \omega = \omega_2. \end{cases}
$$
(18)

Then, for $n \in Z_{++}$, we define a random variable $X_n(\omega)$ depending on whether the coin shows head/tail as follows:

$$
X_n(\omega) = \begin{cases} 1, & \text{if the face of the coin shows tail at the nth trial;} \\ 0, & \text{if the face of the coin shows head at the nth trial.} \end{cases}
$$
 (19)

Also, set a random variable $X(\omega)$ as follows:

$$
X(\omega) = \begin{cases} 1, & \text{if the face of the coin shows head;} \\ 0, & \text{if the face of the coin shows tail.} \end{cases}
$$
 (20)

Then, it is clear that for all $\omega \in \Omega$, $|X_n(\omega) - X(\omega)|$ holds at any trial. Therefore, for all $\eta \in (0,1)$ and for all $n \in \{1, 2, \ldots\}$, we have

$$
Prob(|X_n(\omega) - X(\omega)| > \eta) = 1.
$$
\n(21)

Thus, $X_n(\omega)$ does not converge to $X(\omega)$.

4.2 Almost Surely Convergence

Next, we see the definition of **almost surely convergence**.

Definition 4.2 (Almost Surely Convergence). A sequence of random variabels ${X_n \in \mathbb{R} : n \in \mathbb{R} \mid X_n \in \mathbb{R} : n \in \mathbb{R} \mid X_n \in \mathbb{R} \mid X_n$ \mathbb{Z}_{++} **} converges almost surely** to *X* if and only if for all $\omega \in \Omega$ which do not belong to events of probability 0,

$$
Prob(\{\omega; X_n \to X \text{ as } n \to \infty\}) = 1,
$$
\n(22)

or

 \overline{a}

$$
\text{Prob}\left(\lim_{n\to\infty} X_n \to X\right) = 1. \tag{23}
$$

We write $X_n \xrightarrow{a.s.} X$.

An example is described below. Given a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$, consider a sequence of random variable $\{X_n, n \in Z_{++}\}\$ as follows:

✒ ✑

$$
X_n: \Omega \to \mathbb{R}, \quad X_n(\omega) = 1 + \frac{1}{n}.\tag{24}
$$

Note that this random variable does not change for the outcome occurring from a sample space. Then, for all $\omega \in \Omega$,

$$
\lim_{n \to \infty} X_n(\omega) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 1 \tag{25}
$$

holds. Therefore,

$$
\text{Prob}\left(\{\omega; X_n \to 1 \quad \text{as} \quad n \to \infty\}\right) = \text{Prob}\left(\lim_{n \to \infty} X_n \to 1\right) = 1\tag{26}
$$

also holds for all $\omega \in \Omega$, which implies that X_n converges almost surely to X.

In the Case of Tossing a Dice

4.3 Convergence in Distribution

Here we check the definition of **convergence in probability**.

Definition 4.3 (Convergences in Distribution). A sequence of random variabels $\{X_n \in \mathbb{R} : n \in \mathbb{R} \}$ \mathbb{Z}_{++} } **converges in distribution** to a continuous random variable *X* if and only if

$$
F_n(\xi) \to F(\xi) \quad \text{as} \quad n \to \infty,\tag{27}
$$

or

 \overline{a}

$$
\lim_{n \to \infty} F_n(X) = F(X),\tag{28}
$$

for all $\xi \in \mathbb{R}$, where F_n is the cumulative distribution function (c.d.f.) of X_n and F is the (continuous) c.d.f. of *X*, and both c.d.f.s are continuous at $\xi \in \mathbb{R}$. We write $X_n \stackrel{d}{\to} X$.

✒ ✑

We will learn the application of this convergence, Central Limit Theorem, in the later class of Econometrics I and TA session.

The following example displays an example of the convergence in distribution. Given a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\{X_n\}$ and *X* be sequences given as follows:

$$
X_n: \Omega \to \mathbb{R}, \quad X_n(\omega) = \frac{1}{n}; \quad X = 0.
$$
\n⁽²⁹⁾

Then, the cumulative distribution function of X_n and that of X are assumed to be take the following form respectively:

$$
F_n(x) = \begin{cases} 1 & \text{if } x \ge \frac{1}{n}; \\ 0 & \text{otherwise.} \end{cases} \qquad F(x) = \begin{cases} 1 & \text{if } x \ge 0; \\ 0 & \text{otherwise.} \end{cases}
$$
 (30)

In this case, we can confirm that for all $X \in \mathbb{R}/\{0\}$, $F_n(x)$ satisfies the following equation

$$
\lim_{n \to \infty} F_n(X) = F(X). \tag{31}
$$

Hence, X_n converges in distribution to X .

In the Case of Tossing a Dice

4.4 Convergence in L *p*

Definition 4.4 (Convergences in L^p). A sequence of random variabels $\{X_n \in \mathbb{R} : n \in \mathbb{Z}_{++}\}\$ **converges in** L^p to *X* if and only if for all $n \in \mathbb{Z}_{++}$, $\mathbb{E}[|X_n|^p] < \infty$ and

 $\sqrt{2\pi}$

$$
\mathbb{E}[|X_n - X|^p] \to 0 \quad \text{as} \quad n \to \infty \tag{32}
$$

or (in another notation,)

$$
\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0 \tag{33}
$$

holds. We write $X_n \stackrel{L^p}{\longrightarrow} X$. Particularly, when $n=2$, we say that X_n converges in mean **square** to *X*.

✒ ✑

Let us consider an example of tossing a (fair) coin. Under the same assumption of a probability (or sample) space mentioned above, define a sequence of random variable X_n for $n \in Z_{++}$ as follows:

$$
X_n(\omega) =: X_n = \begin{cases} 1, & \text{if } \omega = \omega_1 \text{ with probability } p; \\ 0, & \text{if } \omega = \omega_2 \text{ with probability } 1 - p. \end{cases} \tag{34}
$$

In this case, this sequence of random variables becomes a sequence of a Bernoulli random variable. Then, we denote the sum of the sequence X_n from 1 to *n* as X :

$$
X := \frac{1}{n} (X_1 + \dots + X_n).
$$
 (35)

The expectation and variance of each X_n for $n \in Z_{++}$ becomes:

$$
\mathbb{E}[X_n] = 1 \cdot p + 0 \cdot (1 - p) = p;
$$

\n
$$
\mathbb{V}[X_n] = \mathbb{E}[|X_n - \mathbb{E}[X_n]|^2] = p(1 - p).
$$

Assuming that each random variable is independent with each other, a similar calculation results in:

$$
\mathbb{E}[X] = \mathbb{E}\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{\mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]}{n} = p;
$$

$$
\mathbb{V}[X] = \mathbb{V}\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{1}{n^2} \mathbb{V}[X_1 + \dots + X_n] = \frac{1}{n^2} \{ \mathbb{V}[X_1] + \dots + \mathbb{V}[X_n] \} = \frac{1}{n} p(1 - p).
$$

On the other hand, we have

$$
\mathbb{V}[X] = \mathbb{E}\left[|X - \mathbb{E}[X]|^2\right] = \mathbb{E}\left[|X - p|^2\right].
$$

Therefore, $\mathbb{E}[|X-p|^2] = \frac{1}{n}$ $\frac{1}{n}p(1-p)$ holds, and

$$
\lim_{n \to \infty} \mathbb{E} \left[|X - p|^2 \right] = \lim_{n \to \infty} \frac{1}{n} p(1 - p) = 0,
$$
\n(36)

also holds, which indicates that X converges in L^2 to p .

4.5 Relation of Convergences

The following theorem shows significant relations of these four convergences in understanding some concepts of econometric theory such as LLN or CLT.

 $\sqrt{2\pi}$

Theorem 4.1 (Relations of the Convergences). *a.s.* convergence or L^p convergence implies convergence in probability, and the latter implies convergence in distribution.

 $\left\langle \frac{1}{2} \right\rangle$, and the contract of the c We can summerize the above relations in the following graphical image:

Figure 3: Image of the Relation between the Convergences

Then, when considering some "asymptotic convergence (in distribution)," which will be explained in a later class of the Econometrics I or TA session, the following theorems become key tools to prove some asymptotic property.

 $\sqrt{2\pi}$

Theorem 4.2 (Continuous Mapping Theorem). Let $\{X_n \in \mathbb{R}^k : n \in \mathbb{Z}_{++}\}\)$ be sequence of $k \times 1$ random vectors such that $\mathbf{X}_n \xrightarrow[n \to \infty]{d} \mathbf{X}$. If $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^j$ is a continuous function, then $g(X_n) \xrightarrow[n \to \infty]{d} g(X).$

Theorem 4.3 (Slutsky's Theorem). Let $\mathbf{g} : \mathbb{R}^k \to \mathbb{R}^j$ be a function continuous at some point **c** ∈ \mathbb{R}^k that does not depend on *n*. Let $\{X_n \in \mathbb{R}^k : n \in \mathbb{Z}_{++}\}\)$ be sequence of $k \times 1$ random vectors such that $\mathbf{X}_n \stackrel{p}{\to} \mathbf{c}$. Then, $\mathbf{g}(\mathbf{X}_n) \stackrel{p}{\to} \mathbf{g}(\mathbf{X})$ as $n \to \infty$. In other words,

✒ ✑

$$
\plim_{n \to \infty} \mathbf{g}(\mathbf{X}_n) = \mathbf{g} \left(\plim_{n \to \infty} \mathbf{X}_n \right),\tag{37}
$$

if $\mathbf{g}(\cdot)$ is continuous at plim \mathbf{X}_n .

 \overline{a} \searrow