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1 Multivariate Normal Distribution

We provide important reminders of definitions and properties (e.g. the multivariate normal distri-
bution) for the Econometrics class. Before explaining the multivariate normal distribute function,
we introduce the moment generating function(: mgf), whose property is useful for the analysis of
the multivariate normal distribute function.

1.1 Moment Generating Function

Suppose that a random variable X follows a normal distribution X ∼ NR(µ, σ
2). In this case, the

probability density function of X is given as follows.� �
Definition 1.1. We can say that a random variable X follows a normal distribution if its
probability density function (: pdf) takes a form below:

f(x) =
1√
2πσ

exp(− 1

2σ2
(x− µ)2). (1)

� �
A useful property of a normal distribution is its preservation under linear transformation.� �
Theorem 1.2. Assume thatX is a normal distributed with mean µ and variance σ2. Then, the
linear transformation of X, Y = aX + b, follows a distribution such that Y ∼ N(aµ+ b, a2σ2).� �

We can confirm this fact by Change of Valiables. If these two random variables follow the same
distribution, i.e. Fx(z) = Fy(z) for all z, then their moment generation function are certainly equal
to each other, i.e. Mx(t) = My(t) in a neighborhood of 0.� �
Definition 1.3. The moment generating function of a continuous random variable X,
with its pdf f(x), is defined as:

mx(t) = E[etX ] =
∫

etxf(x)dx. (2)

Then, we can derive the mth moment of X by using this function. The first derivative of mx(t)
with respect to t can specify the mean of X and the second derivative determines the second
moment, E[X2].� �

For instance, the m.g.f. of X which follows a distribution X ∼ N(µ, σ2) is represented as follows:

E[exp(tX)] = exp(µt+
1

2
σ2t2). (3)

Actually, numerous distributions do not have moment-generating function. Instead, we usually
use characteristic function which exists for every distribution. More details about the mgf and the
normal distribution is written in the statistics textbooks.

1.2 Definition of Multivariate Normal Distribution

Suppose a n-dimensional random vector X whose mean vector and variance-covariance matrix is
given as follows:
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µ =


µ1

µ2
...
µn

 and Σ = E[(x− µ)(x− µ)′] =


V ar(x1) Cov(x1, x2) · · · Cov(x1, xn)

Cov(x2, x1) V ar(x2)
...

...
. . .

...
Cov(xn, x1) Cov(xn, x2) · · · V ar(xn)

 .

Then, we have the following definition.� �
Definition 1.4. Let X a n-dimensional random vector. When X follows a multivariate
normal distribution, denoted as X ∼ NRn(µ,Σ2), its pdf is defined as:

f(X) =
1

(2π)
1
2 |Σ| 12

exp(−1

2
(x− µ)′Σ−1(x− µ)) (4)

.� �
Next, we want to mention about the properties of multivariate normal distribution. Assume that
Y = (Y1, Y2, ..., Yn)

′ is given as follows:

Y = aX + b. (5)

Where b ∈ Rn×1 is a non-stochastic vector and a ∈ Rn×n is a non-stochastic regular matrix. In
this case, using Change of Valiables, we can derive its distribution.:

Y ∼ NRn(aµ+ b, aΣa′)

2 Ordinary Least Squares

Consider a following regression model:

yi = b1 + b2xi + ui. (6)

for i = (1, . . . , n) representing individuals. We stack above equation for i, then we have

y = xb+ u. (7)

We define y = (y1, y2, . . . , yn)
′ ∈ Rn×1, z = (ı, x), x = (x1, x2, . . . , xn)

′ ∈ Rn×1, ı = (1, 1, . . . , 1)′ ∈
Rn×1, b = (b1, b2)

′ and u = (u1, u2, . . . , un)
′ ∈ Rn×1.

2.1 Assumptions of the Classical Linear Regression Model

The OLS estimator is based on important assumptions. If these assumptions do not hold (especially
exogeneity), we must rely on other methods such as GLS and/or IV.� �

1. Linear model

2. Full Rank: The data matrix z has full rank.

3. Exogeneity of the Independent Variables: E[u|z] = 0

4. Homoscedasticity and No-Autocorrelation: E[u2
i |z] = σ2 and E[uiuj|z] = 0 for all i, j.� �

3



2.2 Derivation of the OLSE

When we estimate (6) or (7), the OLS is applied under some assumptions.� �
Definition 2.1. The OLS estimator is derived as a minimum distance between y and the
vectorial space spanned by i and x for the Euclidian norm:

b̂ = arg min
b

||y − xb||22 = arg min
b

(y − xb)′(y − xb) (8)

= arg min
b

n∑
i=1

(yi − b1 − b2xi)
2. (9)

b̂ = (b̂1, b̂2)
′ is the OLS estimator of b.� �

Next, we explain the meaning of the above definition. Consider that we observed data and esti-
mate (6). Then, it is reasonable to reduce the distance between observed data and our estimation
of E[yi|xi] = b̂1 + b̂2xi. A convenient method is the OLS estimation, which minimizes the sum of
the squared of the residuals:

n∑
i=1

e2i =
n∑

i=1

[yi − (b̂1 + b̂2xi)]
2. (10)

0

E[yi|xi] = b̂1 + b̂2xi

yi = b1 + b2xi

e1

e2

e3

Figure 1: Meaning of OLS
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Consider the stacked version. The loss function is given as follows:

l(b1, b2) = (y − xb)′(y − xb). (11)

The first order condition and the second order condition are derived as follows:

∇bl(b1, b2) = −2x′(y − xb) = 0.

∇2
bb′l(·) = 2x′x > 0 (12)

Keep in mind that the design matrix is invertible. A matrix (x′x)−1 is positive definite and full
rank.� �
Theorem 2.2. Suppose that ı, x are independent, then a unique OLSE is given as follows:

b̂ = (x′x)−1x′y. (13)� �
2.3 Properties of OLSE

Under suitable assumptions, the OLSE has some important properties.� �
1. Unbiasedness

2. Consistency

3. Minimum Variance� �
2.3.1 Unbiasedness

Suppose the regression model like (7). Then, the conditional expectation of OLSE is:

E[b̂|x] = E[(x′x)−1(x′y)|x]
= E[(x′x)−1x′(xb+ u)|x]
= b+ E[(x′x)−1x′u|x]
= b+ (x′x)−1E[x′u|x] = b. (14)

In the same manner, we can derive the conditional covariance matrix of b̂:

V ar[b̂|x] = E[(b̂− b)(b̂− b)′|x]
= E[(x′x)−1x′uu′x(x′x)−1|x]
= (x′x)−1x′E[uu′|x]x(x′x)−1

= σ2(x′x)−1 (15)

.
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2.3.2 Consistency

A consistent parameter b̂ means that:

lim
n→∞

P(∥b̂− b∥ > ϵ) = 0, ∀ϵ > 0.

In practice, we can confirm whether b̂ is consistent or not as follows:

b̂ = (x′x)−1x′(xb+ u)

= b+ (x′x)−1x′u

= b+ (
1

n
x′x)−1(

1

n
x′u). (16)

The third line of above equation is the application of Slutsky’s theorem. Additionaly, we use LLN
in the third line of (16):

1

n
x′u

p−−−→
n→∞

E[x′u] = 0. (17)

This is called as a moment of probability convergence. Assume there exists a regular matrix Q
such that:

(
1

n
x′x)−1 p−−−→

n→∞
E[x′x]−1. (18)

From these equations, we can derive the probability convergence of b̂ as follows:

b̂
p−−−→

n→∞
b+ E[x′x]−1 × 0 = b. (19)

2.3.3 Useful Operators� �
Definition 2.3. Pz = x(x′x)−1x′ is the operator to make a projection vector which can derive
ŷ = xb̂ = x(x′x)−1x′y = Pzy. In addition, Mz = I − Pz is the operator to make a residual
because e = y − ŷ = y − Pzy = Mzy.� �

Note that these operators have particular properties.� �
Corollary 2.4.

• Pz and Mz are symmetric and idempotemt.

• Pzx = x and Mzx = 0 is derived.

• PzMz = MzPz = 0� �
2.3.4 Minimum Variance

Generally, the OLSE of the classical regression model is the best linear unbiased estimator (:
BLUE). In other words, the OLSE has the smallest variance among the estimators which have
linearity and unbiasedness. This is a reason why we adopt OLS to the classical regression model.
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� �
Theorem 2.5. (Gauss-Markov Theorem) OLSE is a BLUE when we estimate a classic
regression model.� �

This theorem is also applied to the n ≥ 3 variable case. This sketch of proof is explained in chapter
4 of Greene(2011).

Let b0 = Cy be another linear unbiased estimator of b, where C is a 2× n matrix. Because b0
is unbiased, we can derive its expectation as follows:

E[Cy|x] = E[Cxb+ Cu|x] = b. (20)

This equation implies that Cx = I. There are many canditates of C. For example, we can consider
the case of C = [z0

−1|0] where z0
−1 is the inverse for first k0 rows of x 1. The variance-covariance

matrix of b0 equalls to σ2CC ′ and we can get following result:

V ar[b0|x]− V ar[b̂|x] = σ2CC ′ − σ2(x′x)−1

= σ2C(Pz +Mz)C
′ − σ2(x′x)−1

= σ2[Cx(x′x)−1x′C + CMzC
′]− σ2(x′x)−1

= σ2Iz(x
′x)−1Iz + σ2CMzC

′ − σ2(x′x)−1

= σ2CMzC
′ ≥ 0 (21)

Because Mz is a symmetric and idempotent matrix, σ2CMzC
′ is positive-semidefinite. Therfore,

V ar[b0|x] ≥ V ar[b̂|x] holds.

1We can say that this method is also applied to the general case, OLS with k ≥ 3 variables. In this class, we
should assume k0 = 1.
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3 R Exercise

In this section, we will explain how to use R.2 Now, we use data of the real estate price and the
location of each building in HongKong.3 Consider the following regression model:

(price)i = a+ b1(housage)i + b2(distance to the station)i

+ b3(a number of convinience stores)i + b4(latitude)i + b5(longitude)i + ui. (22)

Table 1: A multiple regression model of real estate and location

Dependent variable:

price

houseage −0.269∗∗∗

(0.039)

distance −0.004∗∗∗

(0.001)

conviniencestore 1.163∗∗∗

(0.190)

latitude 237.767∗∗∗

(44.948)

longtitude −7.805
(49.149)

Constant −4,945.595
(6,211.157)

Observations 414
R2 0.571
Adjusted R2 0.566
Residual Std. Error 8.965 (df = 408)
F Statistic 108.682∗∗∗ (df = 5; 408)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

R code is given in the appendix. The ”lm” function is a default function of R.

2The data set used in this class is uploaded in the UCI Machine Learning Repository.
3Yeh, I. C., & Hsu, T. K. (2018). Building real estate valuation models with comparative approach through

case-based reasoning. Applied Soft Computing, 65, 260-271.
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#Firstly , please decide the directory where you put a data set.

#Yeh , I. C., & Hsu , T. K. (2018).

#Building real estate valuation models with comparative approach

#through case -based reasoning.

#Applied Soft Computing , 65, 260 -271.

rm(list=ls(all=TRUE)) #A kind of magic spell

install.packages (" stargazer ")

#If you use some packages which are not installed in your R,

#please write this command on the script.

#The stargazer package includes a function to output the result.

library(stargazer) #A command to call packages

variableset <-read.csv("Real estate valuation data set.csv",header=T)

#A command to read a data set with a header.

#We recommend to use a csv file.

variableset <-data.frame(variableset)

houseage <-variableset [,3]

distance <-variableset [,4]

conviniencestore <-variableset [,5]

latitude <-variableset [,6]

longtitude <-variableset [,7]

price <-variableset [,8]

b_1 <-lm(price~houseage + distance +

conviniencestore + latitude + longtitude , data=variableset)

#A default function to estimate a regression model.

stargazer(b_1 ,

title ="A multiple regression model of real estate and location ")

#If you want to write a table by tex , stargazer is useful.

#When you want to check the result quickly ,

#you can add a command type="text" in the above function.
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