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1 Lebesgue-Stieltjes Expression

From the definition of the expectation of a random variable, we can symbolically write the
expectation, by means of Lebesgue-Stieltjes integral, as follows:

E[X] =

∫ ∞

−∞
xdF (x) :=


∑
i

xiP (X = xi) : discrete random variable version;∫ ∞

−∞
xf(x)dx : continuous random variable version.

Here P : Ω → R stands for the probability (: probability mass function) that the realized
value of X becomes xi on a probability space (Ω,F , P ). Also, f(x) stands for the probability
density function defined as the derivative of the cummurative density function F (x) : R → R:

dF (x)

dx
= f(x), (1)

if the derivative exists.

2 Markov’s inequality and Chebyshev’s Inequality

In this section, we introduce two useful theorems which associate the distribution function
of a random variable (or a function of a random variable) with the variables’ expectation.
First, the Markov’s inequality is shown as follows.� �
Theorem 2.1 (Markov’s Inequality). If X is a non-negative random variable and δ is a
positive constant, then

P[X ≥ δ] ≤ E[X]

δ
. (2)

Moreover, If ϕ : R → R is a monotonically increasing nonnegative function for the non-
negative reals, X : Ω → R is a random variable, δ ≥ 0, and ϕ(δ) > 0, then

P[|X| ≥ δ] = P[ϕ(|X|) ≥ ϕ(δ)] =≤ E[ϕ(|X|)]
ϕ(δ)

. (3)

� �
Proof. We prove (2). Since the random variable X is a nonnegative random variable,

E[X] =

∫ ∞

−∞
xdF (x) =

∫ ∞

0

xdF (x). (4)

From this we can derive

E[X] =

∫ ∞

0

xdF (x) =

∫ δ

0

xdF (x) +

∫ ∞

δ

xdF (x)

≥
∫ ∞

δ

xdF (x) ≥
∫ ∞

δ

δdF (x) = δ

∫ ∞

δ

dF (x) = δP[X ≥ δ]. (∵ δ ≤ x ≤ ∞) (5)

From this it is easy to see that (2) holds. A similar calculation yields the extended (or
general) form of the Markov’s inequality or (3).
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The Markov’s inequality gives an upper bound for the probability that a non–negative
function of a random variable is greater than or equal to some positive constant. Next, we
present the Chebyshev’s inequality.� �
Theorem 2.2 (Chebyshev’s Inequality). Let X be a (integrable) random variable with
finite expected value µ and finite non-zero variance σ2. Then for any real number ε > 0,

P[|X − µ| ≥ ε] ≤ E[|X − µ|2]
ε2

=
V [X]

ε2
=

σ2

ε2
. (6)� �

Proof. It can also be proved directly. Using the indicator function:

I(A) =

{
1 if the event A occurs;

0 otherwise,
(7)

we have

P[|X − µ| ≥ ε] = E[I(|X − µ| ≥ ε)]

=

∫ ∞

−∞
(|X − µ| ≥ ε) dF (x)

=

∫ ∞

−∞
I

(∣∣∣∣X − µ

ε

∣∣∣∣ ≥ 1

)
dF (x)

≤
∫ ∞

−∞

∣∣∣∣X − µ

ε

∣∣∣∣ I (|X − µ

ε
| ≥ 1

)
dF (x)

≤
∫ ∞

−∞

∣∣∣∣X − µ

ε

∣∣∣∣2 I (|X − µ

ε
| ≥ 1

)
dF (x)

≤
∫ ∞

−∞

∣∣∣∣X − µ

ε

∣∣∣∣2 dF (x)

=
1

ε2

∫ ∞

−∞
|X − µ|2 dF (x)

=
E[|X − µ|2]

ε2
. (8)

Rewriting this yields the Chebyshev’s inequality.

Chebyshev’s inequality guarantees that, for a wide class of probability distributions, no
more than a certain fraction of values can be more than a certain distance from the mean.

3 Law of Large Numbers

In this section, we will discuss important theorems, so called the law of large numbers (:
LLN), which has a very important role in probability and statistics. LLN states that the
average of a large number of i.i.d. random variables converges to the expected value. There
are two main versions of the law, which are called the Weak and Strong LLN. The difference
between them is mostly theoretical.
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3.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (: SLLN) states that the average of a large number of
i.i.d. random variables converges almost surely to its expected value.� �
Theorem 3.1 (Strong Law of Large Numbers). Let (Xn)n≥1 be a sequence of i.i.d.
random variables with E

[
|X1|4

]
< ∞ and E [X1] = µ. Then,

Xn
a.s.−−−−→

n → ∞
µ,

where Xn ≡ 1

n

n∑
i=1

Xi is the sample mean.

� �
The proof of this theorem is a little difficult. See Appendix A if you want to see the proof.

3.2 Weak Law of Large Numbers

The Weak Law of Large Numbers (: WLLN) states that the average of a large number of
i.i.d. random variables converges in probability to the expected value.� �
Theorem 3.2 (Weak Law of Large Numbers). Let (Xn)n≥1 be a sequence of i.i.d. random
variables with E

[
|X1|2

]
< ∞. Then,

Xn
p−−−−→

n → ∞
µ,

where Xn ≡ 1

n

n∑
i=1

Xi is the sample mean..

� �
Proof. We show that for all ε > 0, the following equality holds:

lim
n→∞

P ({|Xn − µ| > ε}) = 0, (9)

From the assumption, we have

E
[
Xn

]
= E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n
nµ = µ;

V
[
Xn

]
= V

[
1

n

n∑
i=1

Xi

]
=

1

n2
V

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

V [Xi] =
1

n2

n∑
i=1

σ2 =
1

n2
nσ2 =

1

n
σ2.

Substituting these into the Chebyshev’s inequality yields

P
(∣∣Xn − E

[
Xn

]∣∣ ≥ ε
)
≤ V [X]

ε2
⇐⇒ P

(∣∣Xn − µ
∣∣ ≥ ε

)
≤ σ2

nε2
. (10)

Therefore, taking a limit with respect to n results in

lim
n→∞

P ({|Xn − µ| > ε}) = 0, (11)

which implies that Xn
p−→ µ.

SLLN is the probability of the limit, and WLLN is the limit of probability. This is why
we call them weak and strong respectively.
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3.3 Intuitive Understanding

To understand the LLN intuitively, we use the following example.

Example 3.1 (Tossing a Dice). We consider tossing a (fair) dice (infinitely). Let Xi : Ω → R
for i ∈ {1, 2, . . .} be a independently and identically distributed random variable with mean

E [Xn] = µ =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5. (12)

This random variable represents the face showing after tossing a dice at the n th trial. Clearly,
Xi and Xj for i ̸= j are independent. Our focus is placed on how the sample mean:

1

n

n∑
i=1

Xi

move as the number of trial n increases (infinitely). The graphical image is shown below.
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Figure 1: Example: dicetest

From this, we can confirm that the sample mean converges to the mean, i.e.,

1

n

∞∑
i=1

Xi
p−−−−→

n → ∞
µ. (13)

From this, we can conclude that if you repeat an experiment independently a large number
of times and average the result, what you obtain should be close to the expected value.

5



4 Characteristic Function andMoment Generating Func-

tion of a Random Variable

In this section, we introduce two important functions: characteristic function and moment
generating function. The definition of these functions are given as follows:� �
Definition 4.1 (Characteristic Function and Moment Generating Function). For a ran-
dom variable X : Ω → R, a function φX : R → C defined as

φX(t) := E[eitX ] = E[cos(tX)] + iE[sin(tX)] (14)

is called the characteristic function of X. In addition, if there exists a function MX : R →
R defined as

MX(t) := E[etX ] < ∞, (15)

then the function MX is called the moment generating function of X.� �
The characteristic function of a random variable always exists, since it is an integral of

a bounded continuous function over a space whose measure is finite. However, the moment
generating function does not always exists, that is, for some random variables Y , MY (t) :=
E[etY ] = ∞.� �
Proposition 4.1. For a random variable X which follows a normal distribution with
mean 0 and variance σ2 < ∞, we have

φX(t) = exp

{
−t2σ2

2

}
(16)

� �
Proof. Directly calculating the characteristic function φX yields

φX(t) = E[eitX ] =

∫ ∞

−∞
eitx

1√
2πσ2

exp

{
− x2

2σ2

}
dx

=

∫ ∞

−∞

1√
2πσ2

exp

{
−x2 − 2itσ2x

2σ2

}
dx

=

∫ ∞

−∞

1√
2πσ2

exp

{
−(x− itσ2)2 − (itσ2)2

2σ2

}
dx

= exp

{
−(itσ2)2

2σ2

}∫ ∞

−∞

1√
2πσ2

exp

{
−(x− itσ2)2

2σ2

}
dx

=1

= exp

{
−t2σ2

2

}
.

A similar calculation enables us to derive the moment generating function MX = exp
{

t2σ2

2

}
.
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� �
Proposition 4.2. For any two random variables, X : ΩX → R, and Y : ΩY → R, the
following statements are equavalent:

1. Both random variables follow the same distribution: PX = PY ;

2. The cummurative distribution function of X, FX is the same as that of Y , FY :
FX = FY ;

3. The characteristic function of X, φX is equal to that of Y , φX : φX = φY� �

7



5 Central Limit Theorem

The Central Limit Theorem, one of the most striking and useful results in both probability
and statistics, explains why the normal distribution appears in areas as diverse as gambling,
measurement error, sampling, and statistical mechanics. Essentially, the Central Limit The-
orem states that the normal distribution applies whenever one is approximating probabilities
for a sum of many independent contributions all of which are roughly the same size. It is
the Lindeberg–Feller Central Limit Theorem which makes this statement more precise in
providing the sufficient, and in some sense necessary, Lindeberg condition whose satisfaction
accounts for the ubiquitous appearance of the bell–shaped normal(, although here we omit
the argument of the condition since it needs some intricate mathematics to understand).

In a Central Limit Theorem, we first standardise the sample mean X of a sequence of
random variable Xi for i ∈ {1, . . . , n}, that is, we subtract from it its expected value E

[
X
]

and we divide it by its standard deviation
√
V
[
X
]
. Then, we analyse the behaviour of its

distribution as the sample size gets large. What happens is that the standardised sample
mean converges in distribution to a normal distribution:

X − E
[
X
]√

V
[
X
] d−−−−→

n → ∞
Z, (17)

where Z is a standard normal random variable. Intuitively, in the Law of Large Numbers,
the variance of the sample mean converges to zero, while in the Central Limit Theorem the
sample mean is multiplied by

√
n so that its variance stays constant.

5.1 Lindeberg-Levy Central Limit Theorem

In the important case in which the variables Xi for i ∈ {1, . . . , n} are independently and
identically distributed (IID), the above formula becomes the one shown as follows.� �
Theorem 5.1 (Lindeberg–Levy Central limit theorem for a univariate random variable).
Assume that Xi for ii ∈ {1, . . . , n} are a random sample from a probability distrubution
with finite mean µ and finite positive variance σ2, i.e.,

Xi
i.i.d.∼ (µ, σ2). (18)

Define X = 1
n

∑n
1 Xi. Then,

√
n(Xn − µ)

d−−−−→
n → ∞

NR(0, σ
2) (19)� �

Proof. In this proof, we use the fact that a characteristic function of X converges to that of
a random variable which follows a normal distribution. To prove the Lindberg–Levy CLT,
we need to check whether

E
[
eit

√
nXn

]
→ exp

{
−t2σ2

2

}
as n → ∞, (20)

holds where

Xn =
1

n

n∑
s=1

Xi and Xi
i.i.d.∼ (0, σ2). (21)
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First of all, from the assumption that Xi
i.i.d.∼ (0, σ2), we have

E
[
eit

√
nX
]
= E

[
e
i t√

n

∑n
s=1 Xs

]
(22)

=
n∏

s=1

E
[
e
i t√

n
Xs

]
(a)

. (23)

Here we apply the following theorem.� �
Lemma 5.1. The moment generating function of a sum of independent random variables
is just the product of their moment generating functions. That is, for independent random
variables Xi for i ∈ {1, . . . , n},

E
[
ei

∑n
i=1 Xn

]
=

n∏
s=1

E
[
eiXs

]
. (24)

� �
(a) can be rewritten as below.

E
[
e
i t√

n
Xs

]
= E

1 + it√
n
Xs

canceled

− t2

2n
X2

s

+ o

(
t2

n

)
(25)

p−−−−→
n → ∞

E
[
1− t2

2n
X2

s

]
(26)

= 1− t2σ2

2n
(27)

Thus, we can find that

E
[
eit

√
nX
]
=

n∏
s=1

E
[
e
i t√

n
Xs

]
(28)

=

(
1− t2σ2

2n

)n

(29)

p−−−−→
n → ∞

e−
t2σ2

2 = E
[
eitZ
]
, (30)

where Z ∼ NR(0, σ
2). Recall that

lim
n→∞

(
1 +

m

n

)n
= em. (31)

Thus, we can find (20) holds.

The result is quite remarkable as it holds regardless of the parent distribution. An im-
protant extension allows us to relax the assumption of equal variances. The Lindeberg–Feller
form of the central limit theorem, which appears in the following, is the centerpiece of most
of the analysis in econometrics.
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5.2 Lindeberg-Feller Central Limit Theorem

The Lindeberg-Feller Central Limit Theorem states in part that sums of independent random
variables, properly standardised, converge in distribution to standard normal as long as a
certain condition, called the Lindeberg condition, is satisfied.� �
Theorem 5.2 (Lindeberg–Feller Central Limit Theorem for a Univariate Random Vari-
able). Assume that Xi for i ∈ {1, . . . , n} are independent random variables from a prob-
ability distrubution with finite mean µi and finite positive variance σ2

i , i.e.,

Xi ∼ (µi, σ
2
i ). (32)

Define

X =
1

n

n∑
i=1

Xi, µn =
1

n

n∑
i=1

µi, and σ2
n =

1

n

n∑
i=1

σ2
i .

If no single term dominates this average variance, that is,

lim
n→∞

max(σi)

nσn

= 0, (33)

and if the average variance converges to a finite constant,

σ2 := lim
n→∞

σ2
n = lim

n→∞

n∑
i=1

σ2
i < ∞ (34)

holds, then

√
n(Xn − µ)

d−−−−→
n → ∞

NR(0, σ
2). (35)� �

This result generalizes the Central Limit Theorem for independent and identically dis-
tributed sequences. In practical terms, the theorem states that sums of random variables,
regardless of their form, will tend to be normally distributed. The result is yet more remark-
able in that it does not require the variables in the sum to come from the same underlying
distribution. It requires, essentially, only that the mean be a mixture of many random vari-
ables, none of which is large compared with their sum. Because nearly all the estimators we
construct in econometrics fall under the purview of the central limit theorem, it is obviously
an important result.

Remark 5.1 (Intuitive Understanding of the Lindeberg Condition). Proof of the Lindeberg–
Feller theorem requires some quite intricate mathematics that are well beyond the scope of
our work here. We do note an important consideration in this theorem. The result rests on a
condition known as the Lindeberg condition. The sample mean computed in the theorem is a
mixture of random variables from possibly different distributions. The Lindeberg condition,
in words, states that the contribution of the tail areas of these underlying distributions to the
variance of the sum must be negligible in the limit. The condition formalizes the assumption
in the above theorem that the average variance be positive and not be dominated by any
single term. The condition is essentially impossible to verify in practice, so it is useful to
have a simpler version of the theorem that encompasses it.
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Appendix

A Proof of Theorem 1.3

The event

A :=
∞⋂
k=1

∞⋃
n=k

An(= An i.o.) (36)

represents “the event that infinitely many of the events An occurs.” Then, we have the
following theorem.� �
Theorem A.1 (Borel-Cantelli Lemma). If

∞∑
n=1

P(An) < ∞, then P(A) = 0.

� �
Proof. If

∞∑
n=1

P(An) < ∞, then using the fact A ⊂
∞⋃
n=k

An,

P(A) = P

(
∞⋂
k=1

∞⋃
n=k

An

)
= lim

k→∞
P

(
∞⋃
n=k

An

)
≤ lim

k→∞

∞∑
n=k

P(An) = 0. (37)

Adding to the Borel-Cantelli Lemma, we use the following lemma in the following proof.� �
Lemma A.1. For a sequence of independent and identically distributed (i.i.d) random
variables Xn with E[|X1|4] < ∞ and E[X1] = µ, there exists a constant K < ∞ such
that for all N ∈ Z++

E
[
|Sn − nµ|4

]
≤ Kn2. (38)

where

Sn := X1 + · · ·+Xn =
n∑

k=1

Xk. (39)

� �
Now we prove Theorem 1.3. For a sequence of independent and identically distributed

(i.i.d) random variables Xn with E[|Xn|4] < ∞ and E[Xn] = µ for n ∈ Z++, let Sn be the
sum from X1 to Xn in the sequence:

Sn := X1 + · · ·+Xn =
n∑

k=1

Xk. (40)

By Markov’s inequality,

P
({

1

n
|Sn − nµ| ≥ n−γ

})
≤ E

[
|Sn/n− µ|4

n−4γ

]
≤ Kn−2+4γ (41)
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holds. Also define γ ∈ (0, 1/4) and

An :=

{
1

n
|Sn − nµ| ≥ n−γ

}
. (42)

Then, by Borel-Cantelli Lemma, since

∞∑
n=1

P(An) ≤
∞∑
n=1

Kn−2+4γ < ∞ (43)

holds, we have

P

(
∞⋂
k=1

∞⋃
n=k

An

)
= 0. (44)

(The regorous argument for (43) are shown in the following Remark.) On the other hand,
the event Ac happens if and only if there exists a real number N such that for all n ≥ N ,∣∣∣∣Sn

n
− µ

∣∣∣∣ < n−γ, (45)

which implies that Sn/n = Xn
a.s.−−→ µ.

Remark A.1 (Almost sure convergence). If a random variable Xn cnoverges to X almost
surely, then

Prob ({ω; Xn → X as n → ∞}) = 1, (46)

or in another notation,

P
(
lim sup
n→∞

{ω; |Xn(ω)−X(ω)| > ε}
)

= 0, for all ε > 0. (47)

Remark A.2 (Infinitely Sum of Series). Consider the following summation:

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · · . (48)

Then, we can rewrite the above equation as follows:

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+

1

5p
+ · · ·

= 1 +

{
1

2p
+

1

3p

}
+

{
1

4p
+ · · ·+ 1

7p

}
+ · · ·

< 1 +

{
1

2p
+

1

2p

}
+

{
1

4p
+ · · ·+ 1

4p

}
+ · · ·

= 1 +
1

2p−1
+

1

4p−1
+

1

8p−1
+ · · ·

=
∞∑
n=1

2(1−p)(n−1)

=

{
∞ if 0 ≤ p ≤ 1;

1
1−2(1−p) (< ∞) if p ≥ 1.

In fact, when 0 ≤ p ≤ 1, (48) tends to infinity(, although the proof is omitted).
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B Program for Coin Tossing Figure.

N <- 500

# Layout the plots in 2 rows and 3 columns

m <- t(matrix(seq(1, 6), 3, 2))

# Open a PDF file for output

pdf(" CLT_dice_tossing.pdf")

layout(m)

# Throw the dice several times

s1 <- as.integer(runif(N, 1, 7))

s2 <- as.integer(runif(N, 1, 7))

s3 <- as.integer(runif(N, 1, 7))

s4 <- as.integer(runif(N, 1, 7))

s5 <- as.integer(runif(N, 1, 7))

s6 <- as.integer(runif(N, 1, 7))

s7 <- as.integer(runif(N, 1, 7))

s8 <- as.integer(runif(N, 1, 7))

s9 <- as.integer(runif(N, 1, 7))

s10 <- as.integer(runif(N, 1, 7))

bins <- 8

# Plot each histogram

hist(s1, main = "",

xlab = "One throw",

breaks = seq(0, 6) + 0.5)

hist((s1 + s2) / 2,

breaks = bins , main = "",

xlab = "Average of two throws ")

hist((s1 + s2 + s3 + s4) / 4,

breaks = bins ,

main = "",

xlab = "Average of 4 throws ")

hist((s1 + s2 + s3 + s4 + s5 + s6) / 6,

breaks = bins ,

main = "",

xlab = "Average of 6 throws ")

bins <- 12

hist((s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8) / 8,

breaks = bins , main = "",

xlab = "Average of 8 throws ")

hist((s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10) / 10,

breaks = bins , main = "",

xlab = "Average of 10 throws ")

# Close the PDF file

dev.off()
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