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1 Asymptotic Properties of OLSE

In this section, we review the asymptotic properties of the OLSE.

1.1 Single regression model

Suppose the single regression

yi = α + βxi + ui, (1)

where ui
i.i.d∼ NR(0, σ

2).
The OLSE is can be written as

β̂ = β +
n∑

i=1

wiui. (2)

Recall that wi = (xi − x̄)/
∑n

i=1(xi − x̄)2. Then, from the central limit theorem, we obtain∑n
i=1 wiui − E[

∑n
i=1 wiui]√

Var(
∑n

i=1 wiui)
=

β̂ − β

σ/
√∑n

i=1(xi − x̄)2
d−−−→

n→∞
NR(0, 1), (3)

where E[
∑n

i=1 wiui] = 0, Var(
∑n

i=1 wiui) = σ2
∑n

i=1 w
2
i = σ2/

∑n
i=1(xi− x̄)2 and

∑n
i=1 wiui =

β̂ − β. Additionally, the LLN implies that:

1

n

n∑
i=1

(xi − x̄)2
p−−−→

n→∞
E[(xi − µ)2]. (4)

By using (4) and (3), we can apply the CLT as follows:

√
n(β̂ − β)

(σ2
∑n

i=1(xi − x̄)2)−1/2

d−−−→
n→∞

N(0, 1). (5)

Therefore, we can derive following relationship:

β̂ − β
d−−−→

n→∞
N(0, σ2E[(xi − x̄)2]−1).

2 Test Statistics

Ex.) Constraint OLS:

y = xb+ u where Rb = q, (6)

where b1 + b2 = 1, R = (1, 1) and q = 1.
We can check whether Rb− q = 0 or not by the Wald test, . Now, we are going to explain a
similar statistics, so called χ2 statistics, which leads to the Wald statistics.
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2.1 Chi-Square Distribution

We first review the chi-square distribution since the Wald statistics follows this distribution.� �
Theorem 2.1. Suppose that a random variable X ∈ Rn×1 follows a normal distribution
X ∼ N(µ, V ), where V ∈ Rn×n is positive definite. Then, a random variable W0 =
(X−µ)′V −1(X−µ) follows a χ2(n) distribution. Its probability density function is given
as follows:

fn(w0) =
1

2
n
2Γ(n

2
)
w

n
2
−1

0 e−
w0
2 ,

where Γ(n
2
) is a gamma function.� �

Keep in mind that χ2 distribution with n freedom is defined by the summation of the square
of n random variables which follows the standard normal distribution, NR(0, 1). By using
this definition, the proof of the above theorem is not so difficult.

Proof. Suppose that V can be decomposed as:

V = C ′ΛC.

Then, we can calculate V = V 1/2V 1/2 where V 1/2 = C ′Λ1/2C. In addition, we can say
Z ≡ V −1/2(X−µ) ∼ NRdim(X)(0, I) by the properties of the multivariate normal distribution.
Let W0 ≡ Z ′Z =

∑n
i=1 Z

2
i . Because each Zi follows the standard normal distribution, Z2

i

follows χ2(1) distribution. Therefore, W0 ∼ χ2(n) is proven.
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2.2 Delta Method

Consider the case of a parameter θ0 to be estimated and sequence of its estimator θ̂n. If θ̂n

has an asymptotic normality,
√
n(θ̂n − θ0)

d−→ N(0,Σ), we can derive the following theorem.� �
Theorem 2.2. Suppose any continuous, differentiable function g : Rd → Rs. Let
X1, X2, . . . , Xn a sequence of d-dimensional random variables. If θ̂n has an asymptotic
normality, we can state that:

√
n[g(θ̂n)− g(θ0)]

d−−−→
n→∞

NRdim(g)(0, Dg(θ0)ΣD
′
g(θ0)), (7)

where Dg(θ) is a Jacobian matrtix of θ.� �
Suppose that there is a parameter θ̄ ∈ (θ0, θ̂n). Then, we can use a mean value expansion:

g(θ̂n) = g(θ0) +Dg(θ̄)(θ̂n − θ0).

By using this expression, we can prove (7).

Proof. Because of the mean value expansion, we can state:

√
n[g(θ̂n)− g(θ0)] =

√
nDg(θ̄)(θ̂n − θ0)

=
√
nDg(θ0)(θ̂n − θ0) +

√
n[Dg(θ̄)−Dg(θ0)](θ̂n − θ0) (8)

Here, if θ̂n
p−−−→

n→∞
θ0 is given, θ̄

p−−−→
n→∞

θ0 is established. Therefore, the second term of (RHS)

in the (8) is calculated as:

[Dg(θ̄)−Dg(θ0)]
√
n(θ̂n − θ0) = op(1)Op(1) = op(1), (9)

because
√
n(θ̂n − θ0) converges in distribution.1 By the (8) and the (9), we can derive:

√
n[g(θ̂n)− g(θ0)] =

√
nDg(θ0)(θ̂n − θ0) + op(1). (10)

Since we can apply the property of multivariate normal distribution in this equation, we can

say
√
nDg(θ0)(θ̂n − θ0)

d−−−→
n→∞

NRdim(g)(0, Dg(θ0)ΣD
′
g(θ0)). We can now apply the asymptotic

equivalence lemma of the main text.� �
Lemma 2.3. Let {xn} and {yn} be sequences of n × 1 random vectors. If zn

d−−−→
n→∞

z

and xn − zn
p−−−→

n→∞
0, then xn

d−−−→
n→∞

z.� �
By using this lemma, we can derive (7).

1The lemma 3.5 in the main textbook implies that a K × 1 vector xn is Op(1) if xn converges x in
distribution.
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2.3 Test Statistics

Suppose that {b̂n : n = 1, 2, . . . } be a sequence of estimators which satisfies:

√
n(b̂n − b)

d−−−→
n→∞

NRdim(bn)(0, V )

where V > 0 is the asymptotic variance covariance matrix of
√
nR(b̂n − b) and R ∈ Rq×k

with q ≤ K and rank(R) = q. Then, following lemma is derived.� �
Lemma 2.4. In the above settings,

√
nR(b̂− b)

d−−−→
n→∞

NRq(0, RV R′) and:

[
√
nR(b̂n − b)]′(RV R′)−1[

√
nR(b̂n − b)]

d−−−→
n→∞

χ2(q).

In addition, if V̂ (the estimator of V ) has consistency, then:

[
√
nR(b̂n − b)]′(RV̂ R′)−1[

√
nR(b̂n − b)]

d−−−→
n→∞

χ2(q).� �
Proof. 2 If

√
n(b̂n− b)

d−→ N(0, V ) as n → ∞, then
√
nR(b̂n− b)

d−−−→
n→∞

N(0, RV R′) is derived.

Assume that x is written as follows:

x = [
√
nR(b̂n − b)]′Q−1

n [
√
nR(b̂n − b)],

where Qn = RV̂ R′(V̂ is a consistent estimator of V ) and cn =
√
nR(b̂n−b). Then, cn

d−−−→
n→∞

c

where c ∼ NRc(0, RV R′) and Qn
d−→ Q where Q = RV R′. Because R is full rank and V is

positive definite, Q is invertible. Therefore, W
d−→ c′Q−1c ∼ χ2(n) by the Theorem 3.1.

2.4 Review of t Statistics

In Econometrics class, t distribution is applied to the statistical test and the confidence
interval of OLSE. Therfore, we shortly review of this statistics.

2.4.1 General Definition

Suppose the case that the sequence of random variables Xi(i = 1, · · · , n). Each Xi follows
i.i.d. normal distribution such that N(µ, σ2). By applying CLT, we have:

X̄ − µ√
σ2/n

d−−−→
n→∞

Z, (11)

where Z follows a standard normal distribution.If we do not know the true variance σ2, we
use an estimator of the sample variance, s2:

t =
X̄ − µ√
s2/n

, (12)

2This proof is explained in Chapter 2 of Fumio, Hayashi(2000) ”ECONOMETRICS”, PRINCETON UNI-
VERSITY PRESS.
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where s2 = 1
n−1

[(X1 − X̄)2 + · · ·+ (Xn − X̄)2].Now, we can rewrite (12) as follows:

t =
X̄ − µ√
σ2/n

/

√
(n− 1)s2

σ2
/(n− 1). (13)

The numerator follows standard normal distribution and a part of denominator, (n−1)s2

σ2 ,
follows χ2 distribution with n− 1 freedom.

2.4.2 t Statistics for OLSE

In the case of OLSE of (2), as we learn in Section 1, the following relationship is established:

β̂ − β

σ/
√∑n

i=1(xi − x̄)2
d−−−→

n→∞
NR(0, 1).

In this case, replacing σ by its estimator σ̂, we obtain t statistics such as:

t =
β̂ − β

σ̂/
√∑n

i=1(xi − x̄)2
∼ t(n− 2). (14)

We will explain the reason why we can derive above equation. At first, we must consider
how to derive σ̂2.� �
Theorem 2.5. Under the assumption of the classical OLS model, the (unbiased) esti-
mator of σ2 is given as follows:

σ̂2 =
1

n− 2

n∑
i=1

ûi
2. (15)

� �
Proof. In the (15), we can say

∑n
i=1 ûi

2 = û′û and the residual is rewritten as follows:

û = Mxû = [Iz − x(x′x)−1x′]u. (16)

Therefore, û′û is calculated as follows:

û′û = u′Mzu

= tr(u′Mxu)

= tr(Mxu
′u) (17)

Then, the expectation of (17) is given as follows:

E(û′û) = E[tr(Mxu
′u)]

= tr[E(Mxu
′u)]

= tr[E(E(Mxu
′u|x))]

= tr[E(MxE(uu′|x))]
= σ2tr[E(Mx)] (18)
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In the above equation, tr[E(Mz)] is represented as follows:

tr[E(Mx)] = tr[In − E(x(x′x)−1x′)]

= n− tr[E(x(x′x)−1x′)]

= n− tr[(x′x)−1x′x]

= n− tr[Ix]

= n− 2. (19)

From these equations, above theorem is proven. Note that this proof follows the exact same
steps as in the case of K covariates.

Finally, we can confirm that t statistic in (14) follows a t distribution whose degrees of
freedom is equal to n− 2.

t =
β̂ − β√

σ2/
∑n

i=1(xi − x̄)2
/

√
(n− 2)σ̂2

σ2
/(n− 2) (20)

The numerator follows standard normal distribution and a part of denominator, (n−2)σ̂2

σ2 ,
follows χ2 distribution whose degrees of freedom is equal to n− 2.
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2.5 R Exercise

In this subsection, we will explain how to use R. Today, we use data of the speed of cars and
the distances taken to stop recorded in the 1920s. Consider the following regression model:

(distance)i = a+ b(speed)i + ui.

The result of this estimation is easily outputted by the stargazer package. This package
makes a table of estimation by tex.

Table 1:

Dependent variable:

dist

speed 3.932∗∗∗

(0.416)
t = 9.464
p = 0.000

Constant −17.579∗∗

(6.758)
t = −2.601
p = 0.013

Observations 50
R2 0.651
Adjusted R2 0.644
Residual Std. Error 15.380 (df = 48)
F Statistic 89.567∗∗∗ (df = 1; 48) (p = 0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We can make a figure of a regression line by pdf file. R code is given in the Appendix.
The lm function is a default function of R.
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3 Appendix

3.1 R code

library(stargazer)

data(cars)

#Let us check the single regression model by using "cars" data set.

fix(cars)

speed <-cars[,1]

dist <-cars[,2]

cars.lm<-lm(dist~speed)

stargazer(cars.lm ,style="all",type=" latex")

plot(cars)

abline(cars.lm, lwd=1, col="blue")

#A command to make pdf file.

pdf(" carsdata.pdf")

plot(cars)

par(new=T)

abline(cars.lm, lwd=1, col="blue")

dev.off()
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