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1 Review of Some Concepts for a Multivariate Normal

Random Variable� �
Theorem 1.1 (Multivariate Normal Distribution). Let the vector x = (x1, . . . , xk)

′ ∈ Rk

be the set of n random variables, µ their mean vector, and Σ their variance–covariance
matrix. The general form of the joint distribution is given by

f(x) = (2π)−k/2|Σ|−1/2exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
.

In the special case where x = (x1, . . . , xk)
′ ∈ Rk and xi for i ∈ {1, . . . , k} is an i.i.d.random

variable with mean 0 and finite variance σ2
i < ∞, we have

f(x) = (2π)−k/2|Σ|−1/2exp

{
−1

2
x′Σ−1x

}
where

Σ = diag(σ2
1, . . . , σ

2
k).� �

The proof is shown in Appendix A.

Adding to the theorem, we can construct the characteristic function and moment generating
function for this random variable as follows.� �
Theorem 1.2 (Characteristic Function and Moment Generating Function). For a ran-
dom variable x : Ω → Rk which follows a multibvariate normal distribution with mean
µ ∈ Rk and variance–covariance matrix Σ ∈ Rk×k, by using a parameter θ ∈ Rk, we can
define a function φX : Rk → C:

φx(θ) := E[eiθ′x] = exp

(
iθ′µ− 1

2
θ′Σθ

)
, (1)

which is called the characteristic function of x. In addition, there exists a function
ϕx : Rk → R defined as

ϕ(θ) = E [exp (θ′x)] = exp

(
θ′µ+

1

2
θ′Σθ

)
, (2)

which is called the moment generating function of x.� �
2 Multiple Regression Model

yi = b1xi,1 + · · ·+ bi,kxi,k + ui = xib+ ui, (3)

where xi = (xi,1, . . . , xi,k) is a 1×K vector for i ∈ {1, . . . , n} and b = (b1, . . . , bk)
′ is a k × 1
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vector. Denoting by

y := (y1, . . . , yn)
′ ∈ Rn,

u := (u1, . . . , un)
′ ∈ Rn,

x :=

x1
...
xk

 =

x1,1 · · · x1,k
...

. . .
...

xn,1 · · · xn,k

 ∈ Rn×k,

we can write the stacked regression system as follows:

y = xb+ u

⇐⇒

y1
...
yn


︸ ︷︷ ︸
∈Rn

=

x1,1 · · · x1,k
...

. . .
...

xn,1 · · · xn,k


︸ ︷︷ ︸

∈Mn×k(R)

b1
...
bk


︸ ︷︷ ︸
∈Rk

+

u1
...
un


︸ ︷︷ ︸

∈Rn

 .

2.1 Derivation of the OLS Estimator

In this subsection, we derive the OLS estimator, which is defined as follows.� �
Definition 2.1 (Ordinary Least Squares (OLS) Estimator for a Multivariate Regression
Model). The OLS estimator b̂ for a multivariate regression model is a vector b̂ ∈ Rk

which satisfies the minimum distance between y and the vectorial space of Rn generated
by X for the Euclidian norm:

b̂ = arg min
b

∥y −Xb∥22 = arg min
b

(y −Xb)′ (y −Xb) = arg min
b

n∑
i=1

(
yi −

k∑
l=1

blXi,l

)2

.

� �
The residual is defined by ûi = yi − ŷi =

∑k
l=1 b̂lXi,l. Therefore, the above definition can be

written as

b̂ = arg min
b

n∑
i=1

û2
i .

This implies that the OLS estimator is an estimator which minimizes the sum of the residual
sum of squares. The OLS estimator obtained from the above definition becomes as follows.� �
Theorem 2.1 (Ordinary Least Squares (OLS) Estimator for a Multivariate Regression
Model). Suppose

H1: X1, . . . , Xk are independent,

then the OLS estimator b̂ exists uniquely and satisfies

b̂ = (X ′X)
−1

(X ′y) . (4)� �
Proof. To obtain the OLS estimator, we have to confirm the first and second order condition
for the minimization problem of the following loss function S(b):

arg min
b

∥y −Xb∥22 =: arg min
b

S(b).
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The first order condition becomes

∇b∥y −Xb̂∥22 = ∇b

(
y −Xb̂

)′ (
y −Xb̂

)
= −2X ′(y −Xb̂) = 0.

The OLS estimator, denoted as b̂, satisfies this equation, and hence

(X ′X) b̂ = X ′y.

From the assumption H1, the inverse matrix (X ′X)−1 exists, with X = (X ′
1, . . . , X

′
k)

′ ∈
Mn×k(R), whose columns are independent so that X ′X is a full rank matrix, and therefore
we can obtain the OLS estimator in the form of (4). The second order condition becomes

∇2
b,b′∥y −Xb̂∥22 = 2X ′X > 0.

By assumption H1, X ′X is a positive definite matrix. This shows that the loss function S(b)
has a minimum at the OLS estimator b̂.

From this theorem, we can confirm that the OLS estimator expressed as (4) is a random
variable since we can rewite it as follows:

b̂ = b+ (X ′X)
−1

X ′u. (5)

Therefore, we can consider the mean and variance of the OLS estimator. First, we see the
mean of the OLS estimator, which will be used to prove that the OLS estimator is an unbiased
estimator.� �
Proposition 2.1 (Mean of the OLS Estimator). Suppose

H2: E[ui

∣∣X] = 0 for all i ∈ {1, . . . , n},

then the conditional expectation of the OLS estimator b̂ becomes

E[b̂|X] = b. (6)� �
Proof. Calculating the expectation of b̂ yields

E[b̂|X] = E
[
(X ′X)

−1
(X ′y)

∣∣∣X]
= b+ E

[
(X ′X)

−1
X ′u

∣∣∣X]
= b+ (X ′X)

−1
X ′ E

[
u
∣∣X]︸ ︷︷ ︸

=0(from H2)

= b,

which proves (6).

Remark 2.1 (Unconditional Expectation of the OLS estimator). The conditional expecta-
tion of the OLS estimator is same as the unconditional one:

E[b̂] = b.

from the law of iterated expectation mentioned below.
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� �
Lemma 2.1 (Law of Iterated Expectation). For any two random variables x and y,

E[y] = Ex [E[y|X]] , (7)

where Ex is the expectation over the values of x.� �
The proof is omitted (left as an exercise for students). From this, we have

E[b̂] = E
[
E[b̂|X]︸ ︷︷ ︸

=b

]
= E[b] = b.

The variance of the OLS estimator, which is the minimum variance in the class of linear
OLS estimator, becomes as follows.� �
Proposition 2.2 (Variance of the OLS Estimator). Suppose [H1–H2] holds and assume

H3 V[ui|X] = σ2 for all i ∈ {1, . . . , n};

H4 E[uiuj|X] = 0 for all i ̸= j and i, j ∈ {1, . . . , n},

the conditional variance of the OLS estimator b̂ becomes

V[b̂|X] = σ2 (X ′X)
−1

, (8)

and the unconditional variance becomes

V[b̂] = σ2E
[
(X ′X)

−1
]
. (9)� �

Proof. From the Eq, (5) and Eq, (6),

b̂− E[b̂
∣∣X] = b̂− b = (X ′X)

−1
X ′u.

Therefore,

V[b̂
∣∣X] = E

[(
b̂− E[b̂

∣∣X]
)(

b̂− E[b̂
∣∣X]
)′ ∣∣∣X]

= E
[
(X ′X)

−1
X ′uu′X (X ′X)

−1 ∣∣X]
= (X ′X)

−1
X ′E

[
uu′∣∣X]X (X ′X)

−1

= (X ′X)
−1

X ′σ2InX (X ′X)
−1

= σ2 (X ′X)
−1

.

This implies (8) holds. Thus,

V[b̂] = E
[
V[b̂
∣∣X]
]
+ V

[
E[b̂
∣∣X]
]

= E
[
σ2 (X ′X)

−1
]
+ V[b]︸︷︷︸

=0

= σ2E
[
(X ′X)

−1
]
,

which porves (9). See the Appendix B for the proof of the first equality.
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2.2 Properties of the OLS Estimator

Here we exhibit some properties of the OLS estimator.� �
Theorem 2.2 (Properties of the OLS Estimator). The OLS estimator obtained above
has the following properties.

(i) unbiasedness Under the assumption H2, the OLS estimator b̂ becomes an unbi-
ased estimator:

E[b̂] = b. (10)

(ii) consistency Under the following assumption:

H5 X ′X is positive definite;

H6 For all i, for all k, l, the moments of E [|XikXil|] exist and E [X ′X] is positive
definite,

as well as [H1–H4], the OLS estimator b̂ = (X ′X)−1 (X ′y) satisfies

b̂
p−−−→

n→∞
b or plim

n→∞
b̂ = b. (11)

(iii) efficiency Under the assumption [H1–H4], the variance of the OLS estimator is
the minimum one in the class of linear unbiased estimator.� �

Proof. We can derive these properties via a similar calculation in the case of a simple regres-
sion model.

(i) unbiasedness This property is shown above (in Remark 2.1).

(ii) consistency From (5), we have:

b̂ = b+ (X ′X)
−1

X ′u

= b+

(
1

n

n∑
i=1

X ′
iXi

)−1(
1

n

n∑
i=1

X ′
iui

)
.

By WLLN and CMT, we have:

b̂ = b+

(
1

n
X ′X

)−1(
1

n
X ′u

)
(12)

= b+

(
1

n

n∑
i=1

X ′
iXi

)−1(
1

n

n∑
i=1

X ′
iui

)
(13)

P−−−→
n→∞

b+ E [X ′
iXi]

−1 E [X ′
iui] . (14)

Here we apply the convergence of the product of random variables in probability, which
we will discuss in the following. From the weak law of large numbers (WLLN),
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1

n

n∑
i=1

X ′
iXi

p−−−→
n→∞

E [X ′
iXi] < ∞; (15)

1

n

n∑
i=1

X ′
iui

p−−−→
n→∞

E [X ′
iui] = 0 ∈ Rk. (16)

E [X ′
iui] = 0 holds from the orthogonality condition with respect to X and u. In

addition,

(
1

n
X ′

iXi

)−1
P−−−→

n→∞
E [X ′

iXi]
−1

(17)

holds from the continuous mapping theorem shown as below. Thus, substituting (15)
and (16) into (14) results in

b̂
P−−−→

n→∞
b+ E [X ′

iXi]
−1

0 = b,

which indicates that b̂
p−−−→

n→∞
b.

(iii) efficiency As for the efficiency of the OLS estimator, the following Gauss–Markov
theorem for a multiple regression model support the efficiency.

The convergence of the product of random variables in probability and continuous mapping
theorem are respectively given as follows.� �
Lemma 2.2 (Convergence of the Product of Random Variables in Probability). Suppose
a sequence of random vector Xn converges in probability to X and yn to y, respectively.
Then, the product of the two random variable Xnyn also converges in probability to the
product of the each probability limit:

Xnyn
P−−−→

n→∞
Xy.

In another notation,

plim
n→∞

Xnyn = plim
n→∞

Xn plim
n→∞

yn.� �� �
Lemma 2.3 (Continuous Mapping Theorem). Suppose a sequence of random vector
xn ∈ S converges in probability to x. Then, for any continuous mapping g : S → Rl, the
following relation holds:

plim
n→∞

g (xn) = g

(
plim
n→∞

xn

)
= g (x) .

� �
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3 Gauss–Markov Theorem for a Multiple Regression

Model

Here we will obtain a general result for the class of linear unbiased estimators of b. It can
be conducted via a direct method.� �
Theorem 3.1 (Gauss–Markov Theorem for a Multiple Regression Model). Under the
assumption [H1–H4], the OLS estimater b̂ of the multiple regression model

yi = Xib+ ui, (18)

for all i ∈ {1, . . . , n} is of minimum variance among the class of linear unbiased estimator.� �
Proof. Let us assume another unbiased linear estimator of b, say b̃. Thus, there exists a
matrix A ∈ Rk×n such that b̃ = Ay. Since b̃ is an unbiased estimator,

E[b̃] = b (19)

holds, which yields

E [A {Xb+ u}] = b ⇐⇒ AXb = b. (20)

Therefore, AX = Ik must hold. Moreover, from the equation:

b̃− E[b̃] = A {y −Xb} = Au. (21)

the variance V[b̃] becomes

V[b̃] = V [Au] = AV [u]A′ = A
(
σ2In

)
A′ = σ2AA′, (22)

from the assumption V [u] = σ2In. Using the projection matrix:

MX := In −X (X ′X)
−1

X ′
(
⇐⇒ In = MX +X (X ′X)

−1
X ′
)
, (23)

we can rewrite (22) as follows:

V[b̃] = A
(
σ2In

)
A′

= σ2A
(
X (X ′X)

−1
X ′ +MX

)
A′

= σ2
(
AX (X ′X)

−1
X ′A′ + AMXA

′
)
.

Substituting AX(= X ′A′) = Ik and V[b̂] = σ2 (X ′X)−1 into the above equation results in

V[b̃] = V[b̂] + σ2AMXA
′ ⇐⇒ V[b̃]− V[b̂] = σ2AMXA

′.

Hence, the difference of ith diagonal elements of variance–covariance matrices becomes

V[b̃]ii − V[b̂]ii = a′iMai > 0

for any column vector ai in A for i ∈ {1, . . . , k}, which proves the theorem.
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4 Asymptotic Normality for the OLS Estimator of a

Multiple Regression Model

In this section, we derive the asymptotic distribution of an OLS estimator to observe how
the distribution changes as n → ∞.� �
Theorem 4.1 (Asymptotic Normality of an OLS Estimator). Let b̂ be the OLS estima-
tor obtained under the assumption [H1–H6]. Then, the OLS estimator asymptotically
follows a normal distribution as follows:

√
n(b̂− b)

d−−−→
n→∞

NRk

(
0, σ2 (E [X ′

iXi])
−1
)
.� �

Proof. From (5), we have

b̂ = b+ (X ′X)
−1

X ′u

= b+

(
1

n

n∑
i=1

X ′
iXi

)−1(
1

n

n∑
i=1

X ′
iui

)
.

Therefore,

√
n(b̂− b) =

(
1

n

n∑
i=1

X ′
iXi

)−1(
1√
n

n∑
i=1

X ′
iui

)
. (24)

From the Lindeberg–Feller central limit theorem (Lindeberg–Feller CLT) as well as the
weak law of large numbers (WLLN) and continuous mapping theorem, we have(

1

n

n∑
i=1

X ′
iXi

)−1

P−−−→
n→∞

E [X ′
iXi]

−1
;(

1√
n

n∑
i=1

X ′
iui

)
=
√
n

(
1

n

n∑
i=1

X ′
iui − 0

)
d−−−→

n→∞
NRk (0,V[X ′

iui]) ,

since from the orthogonality condition,

E

[
1

n

n∑
i=1

X ′
iui

]
=

1

n

n∑
i=1

E[X ′
iui] = 0.

Then,

V[X ′
iui] = E

[
V[X ′

iui

∣∣Xi]
]
+ V

[
E[X ′

iui

∣∣Xi]︸ ︷︷ ︸
=0

]
= E

[
X ′

iV[ui

∣∣Xi]Xi

]
= E

[
X ′

iσ
2Xi

]
= σ2E [X ′

iXi] < ∞,

Therefore, from (24) and the Slutsky’s theorem,

√
n(b̂− b)

d−−−→
n→∞

E [X ′
iXi]

−1
b,
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where

b ∼ NRk

(
0, σ2E [X ′

iXi]
)
.

From the following relation:

b ∼ NRk

(
0, σ2E [X ′

iXi]
)
=⇒ E [X ′

iXi]
−1

b ∼ NRk

(
0, σ2E [X ′

iXi]
−1
)
,

we obtain
√
n(b̂− b)

d−−−→
n→∞

NRk

(
0, σ2E [X ′

iXi]
−1
)
.

Here we review the Slutsky’s Theorem.� �
Lemma 4.1 (Slutsky’s Theorem). Suppose a sequence of random vector Xn

P−−−→
n→∞

X

and yn
d−−−→

n→∞
y, respectively. Then, the product of the two random variable Xnyn also

converges in distribution as follows:

Xnyn
d−−−→

n→∞
Xy. (25)� �

Appendix

A The Probability Density Function for a Multivariate

Normal Distribution

A.1 Independent Univariate Normals

To derive the general case of probability density function for a multivariate normal distribu-
tion, we will start with a vector consisting of k independent and normally distributed random
variables with mean 0: x = (x1, . . . , xk) where

xi ∼ NR
(
0, σ2

i

)
.

Let us denote, by fxi
, the probability density function for a single normal random variable

xi for i ∈ {1, . . . , k}. Then, since the variables are independent, the joint probability density
function, fx, of all k variables will just be the product of their densities:

fx = Πk
i=1fxi

= Πk
i=1

1√
2πσ2

i

exp

{
− x2

i

2σ2
i

}
=

1√
(2π)kΠk

i=1σ
2
i

exp

{
−1

2
x′diag(σ2

1, . . . , σ
2
k)

−1x

}
=

1

(2π)k/2|Σ|1/2
exp

{
−1

2
x′Σ−1x

}
where Σ = diag(σ2

1, . . . , σ
2
k). In this case we say that x ∼ NRk (0,Σ). Unfortunately, this

derivation is restricted to the case where these entries are independent and 0-centered. Thus,
we will see that we can derive the general case using this result.
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A.2 Affine Transformations of a Random Vector

Consider an affine transformation L : Rk → Rk, L(x) = Ax + b for an invertible matrix
A ∈ Rk×k and a constant vector b ∈ Rk. It is easy to verify that when we apply this
transformation to a random variable z = (z1, . . . , zk) with mean µ ∈ Rk and variance–
covariance matrix Σz ∈ Rk×k we get a new random variable x = L(z) such that

E[L(x)] = L (E[z]) ;
V[L(x)] = E

[
(x− E[x]) (x− E[x])′

]
= AΣzA

′.

In this case, for a symmetric, positive definite matrix Σ and constant vector µ, we will be
looking at the transformation x = Σ1/2z+µ. It is interesting to note that, given an orthogonal
decomposition Σ = UΛU ′, where U is orthogonal and Λ is a diagonal matrix consisting of
the eigenvalues of Σ, entry xi of the new random vector is a weighted sum of originally
independent random variables in z. Let ui denote the ith row of a matrix U . Then,

xi =
(
Σ1/2

z z+ µ
)
i
=
√
λiuiz+ µi =

k∑
j=1

λiuijzj + µi.

We now just need one more fact about a change of variables to derive the general multivariate
normal probability density function for this new random vector.

A.3 Probability Density Function of a Transformed Random Vec-
tor

Suppose that z is a random vector taking on values in a subset S ∈ Rk, with a continuous
probability density function f . Suppose x = r(z) where r is a differentiable function from S
onto some other subset T ∈ Rk. Then, the probability density function g of x is given by

g(x) = f(z)

∣∣∣∣det(dz

dx

)∣∣∣∣ = f
(
r(x)−1

) ∣∣∣∣det(dz

dx

)∣∣∣∣ ,
where dz

dx
stands for the Jacobian of the inverse of r, and det() the determinant of a matrix.

Returning to our previous discussion, where x = Σ1/2z + µ, we can see that the inverse
transformation is given by z = Σ−1/2(x− µ). Thus, the determinant of the Jacobian of this
inverse becomes det(Σ−1/2) = 1√

det(Σ)
. (You should check this equality using some porperties

about the determinant.)

A.4 The Multivariate Normal Probability Density Function

Consider the random vector z ∼ NRk (0, I) where I is is the identity matrix. As before we let
x := Σ1/2z+ µ for positive definite Σ and a constant vector µ. We can now find the density
function g of x from the known density function f for z.
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g(x) = f
(
r(x)−1

) ∣∣∣∣det(dz

dx

)∣∣∣∣
= f

(
Σ−1/2(x− µ)

) 1√
det(Σ)

=
1√
(2π)k

1√
det(Σ)

exp

{
−1

2

(
Σ−1/2(x− µ)

)′ (
Σ−1/2(x− µ)

)}
=

1

(2π)k/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
.

This is the probability density function for a multivariate normal distribution with mean
vector µ and a covariance matrix Σ. We say that x ∼ NRk (µ,Σ).

B Properties of Conditional Variances
� �
Theorem B.1 (Properties of Conditional Variances).

V [y] = E
[
V[y

∣∣X]
]
+ V

[
E[y
∣∣X]
]
. (26)� �

Proof. We can derive this relation in direct procedure shown as follows.

V [y] ≡ E
[
(y − E[y])2

]
= E

[(
y − E[y

∣∣X] + E[y
∣∣X]− E[y]

)2]
= E

[(
y − E[y

∣∣X]
)2]

+ E
[(
E[y
∣∣X]− E[y]

)2]
+ 2E

[(
y − E[y

∣∣X]
) (

E[y
∣∣X]− E[y]

)]
.

Here we have the following calculation:

E
[
y − E[y

∣∣X]
∣∣X] = E

[
y
∣∣X]− E

[
E[y
∣∣X]
∣∣X]

= E
[
E
[
y
∣∣X]− E[y

∣∣X]
∣∣X]

= 0.

Thus,

E
[(
y − E[y

∣∣X]
) (

E[y
∣∣X]− E[y]

)]
= E

[
E
[(
y − E[y

∣∣X]
) (

E[y
∣∣X]− E[y]

) ∣∣∣X]]
= E

[(
E[y
∣∣X]− E[y]

)
E
[(
y − E[y

∣∣X]
) ∣∣∣X]]

= 0.

Note that E [c|X] = c for any constant c and E[y
∣∣X] is a random variable of x. Therefore,

by using the law of iterated expectations,

V [y] = E
[(
y − E[y

∣∣X]
)2]

+ E
[(
E[y
∣∣X]− E[y]

)2]
= E

[
E
[(
y − E[y

∣∣X]
)2 ∣∣∣X]]+ E

[(
E[y
∣∣X]− E

[
E[y
∣∣X]
])2]

= E
[
V[y

∣∣X]
]
+ V

[
E[y
∣∣X]
]
,

which proves (26).
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Lemma B.1. In general, we have the following equation:

E
[
g(x)

(
y − E[y

∣∣X]
)]

= 0.

Proof. Using the fact E
[
y − E[y

∣∣X]
∣∣X] = 0, we have

E
[
g(x)

(
y − E[y

∣∣X]
)]

= E
[
E
[
g(x)

(
y − E[y

∣∣X]
) ∣∣X]]

= E
[
g(x)E

[(
y − E[y

∣∣X]
) ∣∣X]]

= 0.

� �
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