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1 Review of F Statistic Test

1.1 Fisher Distribution under Normal Disturbance Term

The Fisher distribution is used for the F test. We can use this statistic to test linear restric-

tions of OLS models, structural change, seasonality and so on.� �
Definition 1.1. The Fisher distribution with q1 and q2 degrees of freedom, denoted as

F (q1, q2), is defined as the ratio between two χ2 distributions normalized by their degrees

of freedom:

Q1 ∼ χ2(q1), Q2 ∼ χ2(q2), Q1 ⊥ Q2,

Z =
Q1/q1
Q2/q2

∼ F (q1, q2). (1)

The density function f(x) is given by

f(x) :=
Γ
(
m+n
2

)
Γ
(
m
2

) (
n
2

) (m
n

)m
2
x

m
2
−1
(m
n
x+ 1

)−m+n
2

,

where Γ(x) stands for a Gamma function, defined as follows:

Γ (x) =

∫ ∞

0

sx−1e−sds.

� �
Now we consider the classical regression model as follows:

y = Xb+ u. (2)

In this equation, we assume that u|X ∼ NRn(0, σ2In). By using (1) , the normality of the

disturbance terms, and Cochran’s theorem, we can derive:

(b̂− b)′X ′X(b̂− b)/K

û′û/(n−K)
∼ F (K,n−K). (3)

To prove this equation, keep in mind a following lemma.� �
Lemma 1.2. Suppose that a matrix A ∈ Rk×k is idempotent. Then, we can establish

following statements.

1. All eigen values of A are equal to 0 or 1.

2. tr(A) is equal to numbers of the unit roots of A.

3. Assume the k × 1 vector X ∼ N(0, I), then we have X ′AX ∼ χ2(tr(A)).� �
By applying the first and second statements, we can prove last one.1.

1Please check Greene(2011):1040-1042, 1083-1084 if you need to review these two statements.
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Proof. Suppose the case of the quadratic form like q = X ′AX. By using the diagonal decom-

position of A, we can rewrite q as follows:

q = X ′CΛC ′X = Y ′ΛY =
n∑

i=1

λiy
2
i ,

where Y = X ′C and this vector also follows the multivariate normal distribution because C

is defined as C ′C = I. Recall that a matrix A is idempotent, so its eigen values are equal to

1 or 0. Therefore, we can state q =
∑J

i=1 y
2
i , where J is the numbers of the unit roots, eigen

values which are equal to 1. Thus, we can prove third statement by using the first and second

ones.

By using above lemma, we can show that (3) is surely established. At first, we calculate the

numerator of (3).

(b̂− b)′X ′X(b̂− b) = [(X ′X)−1X ′u]′X ′X[(X ′X)−1X ′u]

= u′X(X ′X)−1X ′u.

Since X(X ′X)−1X ′ is symmetric and idempotent and u follows the normal distribution, we

have following relationship:

u′X(X ′X)−1X ′u

σ2
∼ χ2(tr(X(X ′X)−1X ′)),　

and the degrees of freedom is tr(X(X ′X)−1X ′) = tr((X ′X)−1X ′X)) = K. Thererfore, we can

conclude that:

u′X(X ′X)−1X ′u

σ2
∼ χ2(K). (4)

Next, we analyze the denominator of the (3).

û′û = (Mxu)
′(Mxu)

= u′Mxu

= u′(In −X(X ′X)−1)X)u

Therefore, we deduce the following relationship:

û′

σ

û

σ
=

û′û

σ2
∼ χ2(tr(Mx)).

Here, tr(Mx) equals to n−K and we have following result:

û′û

σ2
=

(n−K)σ̂2

σ2
∼ χ2(n−K), (5)

where σ̂2 = û′û/(n−K). Finally, we check whether b̂ ⊥ û is satisfied or not. Recall that we can

say X ⊥ Y is the same meaning as X and Y are independent (i.e. fXY (x, y) = fX(x)fY (y))

in the cases of X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y). In this class, since u|X ∼ N(0, σ2In) and

b̂|X ∼ N(b, σ2(X ′X)−1) are given, it is enough to prove Cov(û, b̂) = 0.

Cov(û, b̂) = E[û(b̂− b)′]

= E[Mxu((X
′X)−1X ′u)′]

= E[Mxuu
′X(X ′X)−1]

= MxE[uu′|X]X(X ′X)−1

= σ2MxX(X ′X)−1 = 0.
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We have used the law of iterated expectation and MxX = 0 to derive this equation. Next,

we apply the F distribution to test the estimators of the classical linear regression model.

We usually use the F test to check whether the predictive variables can affect the dependent

variable. In this test, a null hypothesis is given as H0 : b2 = 0 and we can check whether

this hypothesis is rejected or not by (3). Here, we suppose that the model to estimate is the

multiple regression model who has a constant term. Under H0, we can rewrite (3) as follows:

b̂′X ′Xb̂/K

σ̂2
∼ F (K,n−K).

1.2 Testing For Linear Restrictions

We also use the F statistic to test the linear restrictions. After explaining this test statistic,

we explain the relationship between the F statistic and the R2 coefficient.� �
Theorem 1.3. Under the assumptions of the classical linear regression model and the

normality of the disturbance terms, we can perform a test of the null hypothesis H0 :

Rb− r = 0, R ∈ Mq×K(R) with rank q ≤ K − 1 based on the Fisher statistic such as:

F =
∆̂′(R′(XX ′)−1R)−1∆̂/q

σ̂2
∼ F (q, n−K), (6)

where σ̂2 = 1
n−K

∑n
i=1 ûi

2 and ∆̂ = Rb̂ − r. In the above equation, q is the number of the

restrictions.� �
Proof. We assume u|X ∼ NRn(0, σ2In), which implies b̂|X ∼ NRk(b, σ2(X ′X)−1). Then, we can

say Rb̂− r|X ∼ NRq(0, σ2R(X ′X)−1R′) and derive the Wald criterion such as:

W0 =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)

σ2
∼ χ2(q), (7)

because of the following lemma.� �
Lemma 1.4. If a vector y follows the normal distribution, y ∼ NRn(µ,Σ), then we can

derive (y − µ)′Σ−1(y − µ) ∼ χ2(n).� �
The proof of the above lemma is omitted because we explained this theorem in the TA session

#03. In addition, we know the following relationship by the previous subsection:

û′û

σ2
=

(n−K)σ̂2

σ2
∼ χ2(n−K).

Therefore, under the normality assumption on u and thereby b̂ ⊥ û (more accurately, by

Cochran’s theorem), we can derive a test statistic for linear restrictions as follows:

f =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)/q

û′û/(n−K)
∼ F (q, n−K). (8)

You need not prove the independence of the numerator and denominator of the F-statistic if

they take the forms A′ZA and B′ZB, where A and B are vectors of certain values, and Z is a

random variable.
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1.3 Coefficient of Determination and F Distribution

1.3.1 Coefficient of Determination

The coefficient of determination measures the portion of variance explained by the model

and is defined as:

R2 = 1−
∑n

i=1 ûi
2∑n

i=1(yi − ȳ)2
∈ [0, 1]. (9)

� �
Lemma 1.5. In the matrix form, we we can rewrite R2 as follows:

R2 = 1− û′û

y′(In − 1
n
ii′)y

, (10)

where i ∈ Rn is a vector of 1s.� �
Here, an operator Mi = (In− 1

n
ii′) is a symmetric and idempotent matrix and this is an operator

to measure the deviation of a vector x ∈ Rn×1 from its mean:

Mix = (In −
1

n
ii′)x

= x− 1

n
ii′x

=


x1 − x̄

x2 − x̄
...

xn − x̄

 , (11)

because ii′ is equal to a n × n matrix whose all elements are 1. The proof of this Lemma is

given as follows.

Proof. In this lemma, we have to show that
∑n

i=1(yi − ȳ)2 = y′(In − 1
n
ii′)y.

y′Miy = (y1, · · · , yn)


y1 − ȳ

y2 − ȳ
...

yn − ȳ


=

n∑
i=1

yi(yi − ȳ) =
n∑

i=1

(y2i − yiȳ)

=
n∑

i=1

y2i − ȳ

n∑
i=1

yi =
n∑

i=1

y2i − nȳ2 =
n∑

i=1

(yi − ȳ)2 (12)

1.3.2 Relationship between R2 and F Distribution

We now show that the R2 can be used to test whether the predictive variables can explain

the dependent variable. Consider the regression model as follows:

y = Xb+ u,
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where X = (i | x̃) ∈ Rn×K , x̃ = (X2, . . . , XK) ∈ Rn×K−1, b = (b1, b
′
2)

′ ∈ RK . Then, we

would like to test H0 : b2 = 0, where b2 ∈ RK−1. Using the test for linear constraints, we take

R = (0 | IK−1) ∈ RK−1×K , r = 0 ∈ RK−1 and the test statistic is given as follows:

f0 =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)/K − 1

û′û/(n−K)
∼ F (K − 1, n−K). (13)

At first, we are going to show (Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r) = b̂′2X
′
2MiX2b̂2, where Mi =

In − 1
n
ii′. R(X ′X)−1R′ is represented as follows:

R(X ′X)−1R′ = (0 IK−1)

(
i′i i′X̃

X̃ ′i X̃ ′X̃

)−1(
0

IK−1

)
(14)

In the above equation, an inverse of the partition matrix is rewritten as follows:2(
i′i i′X̃

X̃ ′i X̃ ′X̃

)−1

=

(
· · · ·
... (X̃ ′MiX̃)−1

)
.

Hence, we can derive R(X ′X)−1R′ = (X̃ ′MiX̃)−1. As a consequence, under H0 : b2 = 0, we

have the following relationship:

f0 =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)/K − 1

û′û/(n−K)

=
b̂′2X̃

′MiX̃b̂2/K − 1

û′û/(n−K)
∼ F (K − 1, n−K). (15)

In the (10), we have Miû = Miy −MiXb̂. Because of i′û = 03 and MiX = (0 | MiX̃), we can

calculate Miy as follows:

Miy = MiXb̂+Miû

= MiX̃b̂2 + û.

Therefore, we can show that y′Miy = b̂′2X̃
′MiX̃b̂2 + û′û. Hence, the (15) is represented as

follows:

f0 =
b̂′2X̃

′MiX̃b̂2/(K − 1)

û′û/(n−K)

=
R2y′Miy/(K − 1)

(1−R2)y′Miy/(n−K)

=
R2/(K − 1)

(1−R2)/(n−K)
∼ F (K − 1, n−K). (16)

As a consequence, using the R2 coefficient, the null hypothesis H0 : b2 = 0 can be easily tested.

2More discussion for the inverse matrix of the partition matrix is explained in the Appendix.
3A sum of residuals are equal to zero by definition.
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2 Constrained OLS

2.1 Deriviation of COLS estimator

Suppose that we estimate an econometric model which has a restriction on its parameters.

If we have a priori knowledge that there are some restrictions in the model, we should estimate

constrained OLS (:COLS) estimator.� �
Theorem 2.1. The constrained least squares estimator satisfies following optimization

problem such that:

b̃ = arg min
b

1

2
||y −Xb||22 s.t. Rb = r,

where b ∈ RK , R ∈ Rq×K and r ∈ Rq. The constrained least squares estimator is given as

follows:

b̃ = b̂+ (X ′X)−1R′(R(X ′X)−1R′)−1(r −Rb̂), (17)

where b̂ is called as the unconstrained least squares estimator.� �
The criterion that we minimize is given as follows:

(y −Xb)′(y −Xb) s.t. Rb = r.

We can solve the above minimization problem through first order conditions of the Lagrangian

function as follows:

L(b, λ) = (y −Xb)′(y −Xb)− 2λ′(Rb− r). (18)

The first order conditions of (18) is derived as follows:

∇bL(·, ·) = −2X ′(y −Xb̃)− 2R′λ∗ = 0,

∇λL(·, ·) = −2(Rb̃− r) = 0.

By using these first order conditions, we can proof the above theorem. More details of the proof

is explained in the Appendix.

2.2 Properties of COLS estimator

Next, we introduce the expectation and variance of COLSE. Since Rb = r, we can easily

show that COLSE is a unbiased estimator.

E[b̃|X] = E[b̂|X] + (X ′X)−1R′(R(X ′X)−1R′)−1(r −Rb̂)

= b+ (X ′X)−1R′(R(X ′X)−1R′)−1(r −Rb) = b

For our convenience, we denote b̃− b as follows:

b̃− b = (b̂− b) + (X ′X)−1R′(R(X ′X)−1R′)−1(Rb−Rb̂)

= [IK − (X ′X)−1R′(R(X ′X)−1R′)−1R](b̂− b) := W (b̂− b).
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Thus, the variance of b̃ is written as:

Var(b̃|X) = E[(b̃− b)(b̃− b)′|X]

= E[W (b̂− b)(b̂− b)′W ′|X]

= WE[(b̂− b)(b̂− b)′|X]W ′

= WVar(b̂|X)W ′

= σ2W (X ′X)−1W ′. (19)

Expanding with respect to W , the variance of COLSE is smaller than the variance of the any

other (unrestricted) OLSE:

Var(b̃|X) = σ2(X ′X)−1 − σ2(X ′X)−1R′(R(X ′X)−1R′)R(X ′X)−1

= Var(b̂|X)− σ2(X ′X)−1R′(R(X ′X)−1R′)R(X ′X)−1. (20)

Remember that the above properties are satisfied if the restriction(s) are certainly correct.
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2.3 F Distribution for OLS and COLS

In the case of the restricted OLS, the test statistic f0 in (13) is rewritten by the simple

representation which we use the residual of COLS. By using (17), the numerator of (13) is

equal to (b̂− b̃)′X ′X(b̂− b̃). Moreover, the numerator is represented as another equation such

that:

(y −Xb̃)′(y −Xb̃) = (y −Xb̂−X(b̃− b̂))′(y −Xb̂−X(b̃− b̂)

= (y −Xb̂)′(y −Xb̂) + (b̃− b̂)′X ′X(b̃− b̂)

− (y −Xb̂)′X(b̃− b̂)− (b̃− b̂)′X ′(y −Xb̂)

= (y −Xb̂)′(y −Xb̂) + (b̃− b̂)′X ′X(b̃− b̂),

where X ′(y − Xb̂) = X ′û = 0 is used. In short, the part of numerator in (13) is rewritten as

follows:

(Rb̂− r)′{R(X ′X)−1R′}(Rb̂− r) = (b̂− b̃)′X ′X(b̂− b̃)

= (y −Xb̃)′(y −Xb̃)− (y −Xb̂)′(y −Xb̂)

= ũ′ũ− û′û.

As a consequence, we can obtain f0 by the simple calculation such that:

f0 =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)/K − 1

û′û/(n−K)

=
ũ′ũ− û′û/q

û′û/(n−K)
. (21)

3 R Exercise

In this subsection, we will explain how to use R. Today, we use daily data of the Turkish

stock market from 2009/1/5 to 2009/6/26. Consider the following regression model:

∆log(Turkish Stock Market)t = a+ b21∆log(US Stock Market)t−1

+ b22∆log(EU Stock Market)t−1 + ut.

where Turkish Stock Market implies Istanbul stock exchange national 100 index, US Stock

Market implies Standard & Poor’s 500 return index, and EU Stock Market implies MSCI

European index4. In this class, we test a null hypothesis H0 : b2 = (b21, b22)
′ = 0 by the F

statistic. Although some packages to test OLS models with restrictions may exist, we calculate

the F statistic directly.

4The dataset for this model is uploaded in the UCI Machine Learning Repository, https://archive.ics.
uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE. This data is used in Akbilgic, O., Bozdogan, H., Balaban,
M.E., (2013) ”A novel Hybrid RBF Neural Networks model as a forecaster”, Statistics and Computing. We
reduce the estimated period for our convinience.
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library(stargazer)

dataset <-read.csv(" data_akbilgic.csv",header=TRUE ,stringsAsFactors=FALSE)

turkish <-dataset [,2]

US <-dataset [,4]

EUlag <-dataset [,9]

lnturkish <-diff(turkish)

lnUSlag <-diff(US)

lnEUlag <-diff(EUlag)

#Be careful that this model is the predict model: time series analysis.

#Because these index may not have the weak stationarity ,

#we take the log. diff. .

lnturkish <-lnturkish [2:124]

lnUSlag <-lnUSlag [1:123]

lnEUlag <-lnEUlag [1:123]

variableset <-data.frame(lnturkish ,lnUSlag ,lnEUlag)

stock.lm<-lm(lnturkish~lnUSlag+lnEUlag ,data=variableset)

summary(stock.lm)

#Firstly , derive the estimators of coefficients.

hat_b <-coef(stock.lm)

#Suppose that we want to check H0:b_2=0, where b2 is

#the coef. vec. of log.diff.(US)&log.diff.(EU).

#Convert the data frame into a matrix.

#Please make a matrix R and vector r.

x<-as.matrix(variableset)

R<-matrix(c(0,1,0,0,0,1),2,3,byrow=TRUE)

r<-c(0,0)

#numerator

A<-(R%*% hat_b)-r

B<-R%*% solve(t(x)%*%x)%*%t(R)

nume <-(t(A)%*% solve(B)%*%A)/2

#denominator

hat_u <-residuals(stock.lm)

denom <-(t(hat_u )%*% hat_u )/120

#F statistic: 2 restrictions/ n =123, K=3

F=nume/denom

F

#F=10.46914/ H_0 is rejected in 5% conf. interval.

stargazer(stock.lm ,title=" Turkish Stock Market",style="all",type=" latex")

The detail of the result is written in the Appendix.
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4 Appendix

4.1 Review of a Partition Matrix

Partitioning the matrix to make some groups of elements is useful. For instance, we can

make blocks of the elements of matrix X as follows.

X =

(
X11 X12

X21 X21

)
In this lecture note, we calculate an inverse of the partition matrix.� �
Theorem 4.1. Suppose that X11 and X22 is the square and positive definite matrix in the

above example. Then, we can derive the inverse matrix of X as follows:

X−1 =

(
X11 +X−1

11 X12Y22X21X
−1
11 −X−1

11 X12Y22

−Y22X21X
−1
11 Y22

)
, (A1)

with Y22 = (X22 − X21X
−1
11 X12)

−1. Or alternatively, we can represent X−1 as following

matrix such as:

X−1 =

(
Y11 −Y11X12X

−1
22

−X−1
22 X21Y11 X−1

22 +X−1
22 X21Y11X12X

−1
22

)
, (A2)

with Y11 = (X11 −X21X
−1
11 X12)

−1.� �
Now we explain how to proof (A1).

Proof. Firstly, we can decompose X as a product of the lower and upper triangular matrices

such as:

X =

(
I 0

S I

)(
P Q

0 R

)
=

(
P Q

SP SQ+R

)
.

In the above equation, P = X11, Q = X12, S = X21X
−1
11 , and R = X22−X21X

−1
11 X12.

In the same manner, we can decompose the second matrix in (RHS) of the above equation

as follows:(
X11 X12

0 X22 −X21X
−1
11 X12

)
=

(
X11 0

0 X22 −X21X
−1
11 X12

)(
I X−1

11 X12

0 I

)
.

Therefore, we can rewrite X as a product of a lower triangular matrix, a diagonal matrix and

a upper triangular matrix. This is a kind of the LU decomposition.

X =

(
I 0

X21X
−1
11 I

)(
X11 0

0 X22 −X21X
−1
11 X12

)(
I X−1

11 X12

0 I

)
(A3)

In the above equation, we can apply useful formulas as follows:(
I 0

X21X
−1
11 I

)−1

=

(
I 0

−X21X
−1
11 I

)
,

11



(
X11 0

0 X22 −X21X
−1
11 X12

)−1

=

(
X−1

11 0

0 (X22 −X21X
−1
11 X12)

−1

)
and (

I X−1
11 X12

0 I

)−1

=

(
I −X−1

11 X12

0 I

)
.

By taking the inverse of both sides in (A3), we can prove (A1).

Finally, we introduce the special case of the partition matrix such as:

X∗ =

(
A B

B′ D

)
.

In this case, we can calculate the inverse matrix of X∗ as follows:(
A B

B′ D

)−1

=

(
E F

F ′ G

)
. (A4)

with the following notations:

E = A−1 + A−1B(D − B′A−1B)−1B′A,

F = A−1B(D − B′A−1B)−1,

G = D−1 +D−1B′(A− BD−1B′)−1BD−1.

4.2 Deriviation of COLSE

The first order conditions of (18) is derived as follows:

∂L(·, ·)
∂b

= −2X ′(y −Xb)− 2R′λ = 0, (A5)

∂L(·, ·)
∂λ

= −2(Rb− r) = 0. (A6)

By premultiplying (X ′X)−1 into the (A5), we have b̃ as follows:

b̃ = (X ′X)−1X ′y + (X ′X)−1R′λ̃ = b̂+ (X ′X)−1R′λ̃ (A7)

Multiplying by R from the left side of the above equation, Rb̃ = Rb̂ + R(X ′X)−1R′λ̃. Since

Rb̃ = r must be satisfied, then we also calculate r as r = Rb̂ + R(X ′X)−1R′λ̃. Hence, solving

the above equation w.r.t. λ̃, we obtain λ̃ = [R(X ′X)−1R′]−1(r − Rb̂). Plugging λ̃ into (A7),

the COLSE becomes as follows:

b̃ = b̂+ (X ′X)−1R′[R(X ′X)−1R′]−1(r −Rb̂). (A8)

The orthogonality condition of the OLSE, X ′û = 0, establishes the above equation such that:

(X ′X)b̃−R′λ̃ = X ′y, Rb̃ = r,
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because we have following equation by multiplying (X ′X) to the both sides of (A8):

(X ′X)b̃−R′λ̃ = X ′Xb̂

= X ′ŷ

= X ′(y − û).

Equivalently, we can write the orthogonality condition as a matrix form such as:(
X ′X R′

R 0

)(
b̃

−λ̃

)
=

(
X ′y

r

)
.

The solution of b̃ and λ̃ are given as following matrix representation such as:(
b̃

−λ̃

)
=

(
X ′X R′

R 0

)−1(
X ′y

r

)
. (A9)

Therefore, we can derive b̃ as (17) because of the representation of (A4).
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4.3 Result of R Exercise

Table 1: Turkish Stock Market

Dependent variable:

lnturkish

lnUSlag 0.215∗∗

(0.091)

t = 2.367

p = 0.020

lnEUlag −0.600∗∗∗

(0.120)

t = −4.999

p = 0.00001

Constant −0.0002

(0.002)

t = −0.101

p = 0.920

Observations 123

R2 0.174

Adjusted R2 0.161

Residual Std. Error 0.027 (df = 120)

F Statistic 12.680∗∗∗ (df = 2; 120) (p = 0.00002)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.4 Answer for Questions

Consider the case of a parameter θ0 to be estimated and sequence of its estimator θ̂n. If θ̂n
has an asymptotic normality,

√
n(θ̂n − θ0)

d−−−→
n→∞

N(0,Σ), we can derive the following theorem.� �
Theorem 4.2. Suppose any continuous, differentiable function g : Rd → Rs. Let

X1, X2, . . . , Xn a sequence of d-dimensional random variables. If θ̂n has an asymptotic

normality, we can state that:

√
n[g(θ̂n)− g(θ0)]

d−−−→
n→∞

N(0, Dg(θ0)ΣD
′
g(θ0)), (A10)

where Dg(θ) is a Jacobian matrtix of θ.� �
Suppose that there is a parameter θ̄ ∈ (θ0, θ̂n). Then, we can use a first order Taylor expansion

such as:

g(θ̂n) = g(θ0) +Dg(θ̄)(θ̂n − θ0). (A11)
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Please recall that the (A11) is established because of the mean value theorem.� �
Theorem 4.3. Let f(x) be continuous on the interval [a, b] and it can be differentiated

at the interval of (a, b). Then, there is at least one point c ∈ [a, b] that satisfies following

equation:

f(b)− f(a)

b− a
= f ′(c). (A12)� �

By calculating the above equation, we can get f(b) = f(a)+f ′(c)(b−a). In addition, a general

case of the Taylor expansion is given as follows:� �
Theorem 4.4. Suppose a function f(x), which is continuous on an interval [a, b], can be

differentiated n times in an interval (a, b). Then, there is a point c ∈ (a, b) which satisfies

following equation:

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 + · · ·

+
f (n−1)(a)

(n− 1)!
(b− a)(n−1) +

f (n)(c)

n!
(b− a)n. (A13)

� �
This equation implies that the first order Taylor expansion is same as the mean value theorem.

Now, we prove the (A10).

Proof. Because of the mean value expansion, we can state:

√
n[g(θ̂n)− g(θ0)] =

√
nDg(θ̄)(θ̂n − θ0)

=
√
nDg(θ0)(θ̂n − θ0) +

√
n[Dg(θ̄)−Dg(θ0)](θ̂n − θ0) (A14)

Here, if θ̂n
p−−−→

n→∞
θ0 is given, θ̄

p−−−→
n→∞

θ0 is established. Therefore, the second term of (RHS) in

the (A14) is calculated as:

[Dg(θ̄)−Dg(θ0)]
√
n(θ̂n − θ0) = op(1)Op(1) = op(1), (A15)

because
√
n(θ̂n − θ0) converges in distribution.5 By the (A14) and the (A15), we can derive:

√
n[g(θ̂n)− g(θ0)] =

√
nDg(θ0)(θ̂n − θ0) + op(1). (A16)

Since we can apply the property of multivariate normal distribution in this equation, we can say√
nDg(θ0)(θ̂n − θ0)

d−−−→
n→∞

N(0, Dg(θ0)ΣD
′
g(θ0)). We can now apply the asymptotic equivalence

lemma of the main text.� �
Lemma 4.5. Let {xn} and {yn} be sequences of n× 1 random vectors. If zn

d−−−→
n→∞

z and

xn − zn
p−−−→

n→∞
0, then xn

d−−−→
n→∞

z.� �
By using this lemma, we can derive (A10).

5The lemma 3.5 in the main textbook implies that a K×1 vector xn is Op(1) if xn converges x in distribution.
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