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1 Matrix Transformation

First, we review a matrix decomposition, particularly in the case of a symmetric positive definite
matrix, which plays a powerful role in obtaining the “Generalized Least Squares estimator”, dis-
cussed in a further section. Second, we introduce the vec operator and its useful property related
to the Kronecker product of matrices.

1.1 Diagonal Reduction of a Symmetric Positive Definite Matrix� �
Theorem 1.1 (Decomposition of a Symmetric Positive Definite Matrix). Let W =
(w1, . . . , wn) ∈ Rn×n be a symmetric positive definite matrix. Then, there exists a matrix

W−1/2 ∈ Rn×n such that

W−1/2WW−1/2′ = In,

where In ∈ Rn×n is an identity matrix. This matrix also satisfies

W−1/2′W−1/2 = W−1.� �
1.2 Decomposition of a Variance–Covariance Matrix

From the definition of the variance–covariance matrix,

Ω := V[u
∣∣X] =


V[u1

∣∣X] Cov[u1, u2

∣∣X] · · · Cov[u1, un

∣∣X]
Cov[u2, u1

∣∣X] V[u2

∣∣X] · · · Cov[u2, un

∣∣X]
...

...
. . .

...
Cov[un, u1

∣∣X] Cov[un, u2

∣∣X] · · · V[un

∣∣X]

 ,

the variance–covariance matrix for u = (u1, . . . , un) is a symmetric matrix. Thus, if we assume the
variance–covariance matrix is positive definite, then we can apply the above theorem: there exists
a matrix Ω−1/2 such that

Ω−1/2ΩΩ−1/2′ = In and Ω−1/2′Ω−1/2 = Ω−1.

1.3 Vec Operator

The definition of vec operator is given as follows.� �
Definition 1.1 (vec operator). The vec operator creates a column vector from a matrix A ∈
Rm×n by stacking the the column vectors of A = (a1, . . . , an) below one another:

vec (A) =


a1
a2
...
an

 ∈ Rmn×1

� �
This dedfinition gives rise to the following useful property.
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� �
Theorem 1.2. For matrices A ∈ Ri×l, X ∈ Rl×m, and B ∈ Rm×n,

vec (AXB) = (B′ ⊗ A) vec (X). (1)� �
Proof. We denote the matrices A, X, and B as follows:

A = (a1, . . . , an) ∈ Ri×l, X = (x1, . . . , xl) ∈ Rl×m, B = (b1, . . . , bk) ∈ Rm×n.

Then, the jth column of the matrix AXB ∈ Rm×k, denoted as (AXB)k, becomes

(AXB)k = AXbk

= A
m∑
i=1

xibi,k

=
(
b1,kA b2,kA . . . bm,kA

)
vec (X)

=
(
(b1,k b2,k . . . bm,k)⊗ A

)
vec (X)

=
(
b′k ⊗ A

)
vec (X)

Stacking the columns together yields

vec (AXB) =


(AXB)1
(AXB)2

. . .
(AXB)n

 =


(
b′1 ⊗ A

)(
b′2 ⊗ A

)
. . .(

b′k ⊗ A
)
 vec (X) = (B′ ⊗ A) vec (X),

which proves (1).

Ex.) (
a b
b a

)(
c d
d c

)(
e f
f e

)
=

(
ace+ bde+ adf + bcf acf + bdf + ade+ bce
cbe+ ade+ bdf + acf cbf + adf + bde+ ace

)

vec

{(
a b
b a

)(
c d
d c

)(
e f
f e

)}
=


ace+ bde+ adf + bcf
cbe+ ade+ bdf + acf
acf + bdf + ade+ bce
cbf + adf + bde+ ace



(
e f
f e

)
⊗
(
a b
b a

)
vec

{(
c d
d c

)}
=


ae be af bf
be ae bf af
af bf ae be
bf af be ae



c
d
d
c


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2 Generalized Least Squares Estimator

In this section, we consider a linear heteroscedastic model, where one considers a linear relation-
ship between a dependent or explained variable and multiple explanatory or independent
variables from an n sample under the assumption of heteroscedasticity with respect to the errors
for the linear regression model:

y = Xb+ u. (2)

The definition is given as follows.� �
Definition 2.1 (A Linear Heteroscedastic Model). We call a linear heteroscedastic model a
model where the random vector y linearly depends on k explanatory variables X as (2) with
the assumptions:

GH1: E[u
∣∣X] = 0;

GH2: V[u
∣∣X] = E[u′u

∣∣X] := Ω = Σ(X, θ) is positive definite;

GH3: X ′Ω−1X is positive definite.� �
2.1 OLS Estimator for a Linear Heteroscedastic Model

Here we consider the properties of the OLS estimator derived under the assumption [H1–H3].� �
Proposition 2.1. The OLS estimator

b̂ = (X ′X)
−1

X ′y (3)

becomes an unbiased estimator under [GH1–GH3].� �
Proof.

E[b̂|X] = E
[
(X ′X)

−1
(X ′y)

∣∣∣X] = b+ E
[
(X ′X)

−1
X ′u

∣∣∣X] = b+ (X ′X)
−1

X ′E
[
u
∣∣X] = b,

which shows that the OLS estimator (or (3)) is an unbiased estimator.� �
Proposition 2.2 (Variance of the OLS estimator for a Linear Heteroscedastic Model). Under
the assumption [H1–H3], the variance of the OLS estimator V[b̂] becomes

V[b̂|X] = (X ′X)
−1

X ′ΩX (X ′X)
−1

. (4)� �
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Proof. The variance of the OLS estimator is calculated as follows:

V[b̂|X] = E
[(

b̂− E[b̂
∣∣X]
)(

b̂− E[b̂
∣∣X]
)′ ∣∣∣X]

= E
[
(X ′X)

−1
X ′uu′X (X ′X)

−1 ∣∣X]
= (X ′X)

−1
X ′E

[
uu′∣∣X]X (X ′X)

−1

= (X ′X)
−1

X ′ΩX (X ′X)
−1

.

This proves (4).

2.2 Derivation of the GLS Estimator

In this subsection, we derive the Generalized Least Squares (: GLS) estimator, which is defined as
follows.� �
Definition 2.2 (Generalized Least Squares Estimator). The GLS estimator is a vector b̂GLS ∈
Rk which satisfies the following minimization problem of the following loss function:

b̂GLS = arg min
b

∥y −Xb∥2Ω−1 = arg min
b

(y −Xb)′ Ω−1 (y −Xb) .

� �
The GLS estimator obtained from the above definition becomes as follows.� �
Theorem 2.1 (Generalized Least Squares Estimator). Suppose [H1–H3] holds. Then the
GLS estimator b̂ exists uniquely and satisfies

b̂GLS =
(
X ′Ω−1X

)−1
X ′Ω−1y. (5)� �

Proof. Define Ω−1/2 such that Ω−1/2ΩΩ−1/2 = In. then, multiplying both sides of (2) by Ω−1/2

from the left results in

Ω−1/2y = Ω−1/2Xb+ Ω−1/2u.

By denoting y∗ := Ω−1/2y, X∗ := Ω−1/2X, and u∗ := Ω−1/2u, we have

y∗ = X∗b+ u∗, (6)

where u∗ ∼ NRn×n (0, In). Note that u ∼ NRn×n (0,Ω) =⇒ Ω−1/2u ∼ NRn×n (0, In). The model
assumptions can be reported under this transformation:

GH1’: E[u∗
∣∣X∗] = 0;

GH2’: V[u∗
∣∣X∗] := Ω−1/2V[u

∣∣X]Ω−1/2′ = Ω−1/2ΩΩ−1/2′ = In;

GH3’: X∗′X∗ is positive definite.

Thus, the GLS estimator is the OLS estimator of the regression coefficients of y∗ on X∗:(
X∗′X∗

)−1 (
X∗′y∗

)
=
(
XΩ−1/2′Ω−1/2X ′

)−1 (
XΩ−1/2′Ω−1/2y

)
=
(
XΩ−1X ′)−1

XΩ−1y = b̂GLS,

(7)

which proves (5).

5



To obtain the GLS estimator, we have another method, as in the derivation of the OLS es-
timator, by confirming the first and second order condition for the minimization problem of the
following loss function S(b):

arg min
b

∥y −Xb∥2Ω−1 =: arg min
b

S(b).

The first order condition becomes

∇b∥y −Xb∥2Ω−1 = ∇b (y −Xb)′ Ω−1 (y −Xb)

= ∇b

(
y′Ω−1y − y′Ω−1Xb− b′X ′Ω−1y + b′X ′Ω−1Xb

)
= ∇b

(
−2b′X ′Ω−1y

)
+∇b

(
b′X ′Ω−1Xb

)
= −2X ′Ω−1y + 2X ′Ω−1Xb = 0.

Of course you can apply the chain rule here. Recall that y′Ω−1Xb ∈ R and thereby y′Ω−1Xb =
(y′Ω−1Xb)

′
= b′X ′Ω−1y(∈ R). The OLS estimator, denoted as b̂GLS, satisfies this equation, and

hence (
X ′Ω−1X

)
b̂ = X ′Ω−1y.

From the assumption GH3, the inverse matrix (X ′Ω−1X)
−1

exists, with X = (X1, . . . , Xk) ∈
Mn×k(R)(, whose columns are independent so that X ′X is a full rank matrix), and therefore we
can obtain the OLS estimator in the form of (5). The second order condition becomes

∇2
bb′∥y −Xb∥22 = 2X ′Ω−1X.

By assumption GH3, X ′Ω−1X is a positive definite matrix. This shows that the loss function S(b)
has a minimum at the GLS estimator b̂.

From the Theorem 2.1, we can confirm that the GLS estimator expressed as (5) is a random
variable since we can rewite it as follows:

b̂ = b+
(
X ′Ω−1X

)−1
X ′Ω−1u. (8)

Therefore, we can consider the mean and variance of the GLS estimator. First, we see the mean of
the GLS estimator, which will be used to prove that the GLS estimator is an unbiased estimator.� �
Proposition 2.3 (Mean of the GLS Estimator). Under the assumption [GH1–GH3], the
conditional expectation of the GLS estimator b̂GLS becomes

E[b̂GLS|X] = b. (9)� �
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Proof. Calculating the expectation of b̂GLS yields

E[b̂|X] = E
[(
X ′Ω−1X

)−1
X ′Ω−1y

∣∣∣X]
= E

[(
X ′Ω−1X

)−1
X ′Ω−1 (Xb+ u)

∣∣∣X]
= E

[(
X ′Ω−1X

)−1
X ′Ω−1Xb+

(
X ′Ω−1X

)−1
X ′Ω−1u

∣∣∣X]
= b+ E

[(
X ′Ω−1X

)−1
X ′u

∣∣∣X]
= b+

(
X ′Ω−1X

)−1
X ′Ω−1 E

[
u
∣∣X]︸ ︷︷ ︸

=0(from H2)

= b,

which proves (9).

Remark 2.1 (Unconditional Expectation of the GLS estimator). The conditional expectation of
the GLS estimator is same as the unconditional one:

E[b̂GLS] = b.

from the law of iterated expectation:

E[b̂GLS] = E
[
E[b̂GLS|X]

]
= E[b] = b.

The variance of the GLS estimator, which is the minimum variance in the class of linear GLS
estimator, becomes as follows.� �
Proposition 2.4 (Variance of the GLS Estimator). Under the assumption [GH1–GH3], the
conditional variance of the OLS estimator b̂ becomes

V[b̂GLS|X] = σ2
(
X ′Ω−1X

)−1
, (10)

and the unconditional variance becomes

V[b̂GLS] = E
[(
X ′Ω−1X

)−1
]
. (11)� �

Proof. From the Eq, (8) and Eq, (9),

b̂GLS − E[b̂GLS

∣∣X] = b̂GLS − b =
(
X ′Ω−1X

)−1
X ′Ω−1u.

Therefore,

V[b̂GLS

∣∣X] = E
[(

b̂− E[b̂
∣∣X]
)(

b̂− E[b̂
∣∣X]
)′ ∣∣∣X]

= E
[(
X ′Ω−1X

)−1
X ′Ω−1uu′Ω−1X

(
X ′Ω−1X

)−1 ∣∣X]
=
(
X ′Ω−1X

)−1
X ′Ω−1 E

[
uu′∣∣X]︸ ︷︷ ︸
=Ω

Ω−1X
(
X ′Ω−1X

)−1

=
(
X ′Ω−1X

)−1
X ′Ω−1X

(
X ′Ω−1X

)−1

=
(
X ′Ω−1X

)−1
.
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This implies (10) holds. Thus,

V[b̂GLS] = E
[
V[b̂GLS

∣∣X]
]
+ V

[
E[b̂GLS

∣∣X]
]
= E

[(
X ′Ω−1X

)−1
]
+ V[b] = E

[(
X ′Ω−1X

)−1
]
,

which porves (11).

2.3 Properties of the GLS Estimator

Here we exhibit some properties of the GLS estimator.� �
Theorem 2.2 (Properties of the GLS Estimator). Under the assumption [GH1–GH3], the
GLS estimator obtained above has the following properties:

(i) Unbiasedness: The GLS estimator b̂ becomes an unbiased estimator:

E[b̂GLS] = b; (12)

(ii) Consistency: Under the additional assumption:

GH4: A = E[X ′
iΩ

−1Xi] is non singular;

as well as [GH1–GH3], the GLS estimator b̂GLS satisfies

b̂GLS
p−−−→

n→∞
b; (13)

(iii) Efficiency: The variance of the GLS estimator is the minimum one in the class of linear
unbiased estimator.� �

Proof. We can derive these properties via a similar calculation in the derivation of the OLS esti-
mator.

(i) Unbiasedness: This property is shown above (in Remark 2.1).

(ii) Consistency: By taking the probability limit on both sides of (7), we have

plim
n→∞

b̂GLS = plim
n→∞

[
b+

(
X ′Ω−1X

)−1 (
X ′Ω−1u

)]
= b+ plim

n→∞

(
1

n

n∑
i=1

X∗′
i X

∗
i

)−1

plim
n→∞

(
1

n

n∑
i=1

X∗′
i u

∗
i

)

= b+ plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1

plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1ui

)
. (14)

Here we apply the convergence of the product of random variables in probability. From the
weak law of large numbers (WLLN),

1

n

n∑
i=1

X ′
iΩ

−1Xi
p−−−→

n→∞
E
[
X ′

iΩ
−1Xi

]
< ∞; (15)

1

n

n∑
i=1

X ′
iΩ

−1ui
p−−−→

n→∞
E
[
X ′

iΩ
−1ui

]
= 0(∈ Rk). (16)
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We can prove E [X ′
iΩ

−1ui] = 0 by using the vec operator with the orthogonal condition with
respect to X and u:

vec E
[
X ′

iΩ
−1ui

]
= E

[
vec

(
X ′

iΩ
−1ui

)]
= E

[
(u′

i ⊗X ′
i) vec Ω−1

]
= 0.

In addition,

plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1

= E
[
X ′

iΩ
−1Xi

]−1
(17)

holds from the continuous mapping theorem. Thus, substituting (15) and (16) into (14)
results in

plim
n→∞

b̂ = b+ E
[
X ′

iΩ
−1Xi

]−1
0 = b,

which indicates that b̂
p−−−→

n→∞
b.

(iii) Efficiency: As for the efficiency of the GLS estimator, the following Gauss–Markov theorem
supports the efficiency.

3 Gauss–Markov Theorem for the Generalized Least Squares

Estimator

Here we will obtain a general result for the class of linear unbiased estimators of b. It can be
conducted via a direct method as we have seen in the derivation of the Gauss–Markov Theorem
for the OLS estimator.� �
Theorem 3.1 (Gauss–Markov Theorem for the GLS Estimator). Under the assumption
[GH1–GH3], the GLS estimater b̂GLS of the following regression model

y∗i = X∗
i b+ u∗

i , (18)

for all i ∈ {1, . . . , n} is of minimum variance among the class of linear unbiased estimator.� �
Here we have used the following notations:

y∗ :=


y∗1
y∗2
...
y∗n

 ∈ Rn, X∗ :=
(
X1 X2 · · · Xk

)
∈ Mn×k(R), and u∗ :=


u∗
1

u∗
2
...
u∗
n

 ∈ Rn.

Proof. Let us assume another unbiased linear estimator of b, say b̃. Thus, there exists a matrix
A ∈ Rk×n such that b̃ = Ay∗. Since b̃ is an unbiased estimator,

E[b̃] = b (19)
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holds, which yields

E [A {X∗b+ u∗}] = b ⇐⇒ AX∗b = b. (20)

Therefore, AX∗ = Ik must hold. Moreover, from the equation:

b̃− E[b̃] = A {y∗ −X∗b} = Au∗. (21)

the variance V[b̃] becomes

V[b̃] = V [Au∗] = AV [u∗]A′ = AInA
′ = AA′, (22)

from the assumption V [u∗] = In. Using the projection matrix:

MX∗ := In −X
(
X∗′X∗

)−1

X∗′
(

⇐⇒ In = MX∗ +X∗
(
X∗′X∗

)−1

X∗′
)
, (23)

we can rewrite (22) as follows:

V[b̃] = AInA
′

= A

(
X∗
(
X∗′X∗

)−1

X∗′ +MX∗

)
A′

= AX∗
(
X∗′X∗

)−1

X∗′A′ + AMX∗A′.

Substituting AX∗(= X∗′A′) = Ik and V[b̂] =
(
X∗′X∗)−1

into the above equation results in

V[b̃] = V[b̂] + AMX∗A′ ⇐⇒ V[b̃]− V[b̂] = σ2AMX∗A′.

Hence, the difference of ith diagonal elements of variance–covariance matrices becomes

V[b̃]− V[b̂] = a′iMX∗ai ≥ 0

for any column vector ai in A for i ∈ {1, . . . , k}, which proves the theorem.

4 Comparison of the OLS and GLS estimator

Here we compare the efficiency between OLS and GLS estimators. Accroding to the proceedding
sections, under the assumption [GH1–GH3], we have

V[b̂OLS|X] = (X ′X)
−1

X ′ΩX (X ′X)
−1

;

V[b̂GLS|X] =
(
X ′Ω−1X

)−1
.

Then, subtracting V[b̂GLS|X] from V[b̂OLS|X] results in

V[b̂OLS|X]− V[b̂GLS|X] = (X ′X)
−1

X ′ΩX (X ′X)
−1 −

(
X ′Ω−1X

)−1

= (X ′X)
−1

X ′ΩX (X ′X)
−1 −

(
X ′Ω−1X

)−1
X ′Ω−1ΩΩ−1X

(
X ′Ω−1X

)−1

=
{
(X ′X)

−1
X ′ −

(
X ′Ω−1X

)−1
X ′Ω−1

}
Ω
{
X (X ′X)

−1 − Ω−1X
(
X ′Ω−1X

)−1
}

=
{
(X ′X)

−1
X ′ −

(
X ′Ω−1X

)−1
X ′Ω−1

}
Ω
{
(X ′X)

−1
X ′ −

(
X ′Ω−1X

)−1
X ′Ω−1

}′

=: AΩA′,
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where Ω is positive definite. Therefore, if Ω ̸= In, then AΩA′ also becomes positive definite. As a
consequence,

V[b̂OLS|X]ii − V[b̂GLS|X]ii > 0,

for all i ∈ {1, . . . , n}. These results infer that b̂GLS is more efficient than b̂OLS.

5 Asymptotic Normality for the GLS Estimator

In this section, we derive the asymptotic distribution of an GLS estimator to observe how the
distribution changes as n → ∞.� �
Theorem 5.1 (Asymptotic Normality of an GLS Estimator). Let b̂GLS be the GLS estimator
obtained under the assumption [GH1–GH3]. Suppose

GH5: b = E[X ′
iΩ

−1uiuiΩ
−1Xi] exists;

as well as [GH1–GH4]. Then, the GLS estimator asymptotically follows a normal distribution
as follows:

√
n(b̂− b)

d−−−→
n→∞

NRk

(
0,A−1bA−1

)
.� �

Proof. From (8), we have

b̂ = b+
(
X ′Ω−1X

)−1
X ′u

= b+

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1(
1

n

n∑
i=1

X ′
iΩ

−1ui

)
.

Therefore, rewriting results in

√
n(b̂− b) =

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1(
1√
n

n∑
i=1

X ′
iΩ

−1ui

)
. (24)

From the Lindeberg–Feller central limit theorem (Lindeberg–Feller CLT) as well as the weak
law of large numbers (WLLN) and continuous mapping theorem, we have(

1

n
X ′

iΩ
−1Xi

)−1
P−−−→

n→∞
E
[
X ′

iΩ
−1Xi

]−1
= A;(

1√
n

n∑
i=1

X ′
iΩ

−1ui

)
=

√
n

(
1

n

n∑
i=1

X ′
iΩ

−1ui − 0

)
d−→ NRk

(
0,V[X ′

iΩ
−1ui]

)
,

since from the orthogonal condition,

E

[
1

n

n∑
i=1

X ′
iΩ

−1ui

]
=

1

n

n∑
i=1

E[X ′
iΩ

−1ui] = 0.
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Then,

V[X ′
iΩ

−1ui] = E
[
X ′

iΩ
−1uiuiΩ

−1Xi

]
= b < ∞.

Therefore, from (24) and the Slutsky’s theorem,

√
n(b̂− b)

d−−−→
n→∞

A−1Z,

where

Z ∼ NRk (0, b) .

From the following relation:

Z ∼ NRk (0, b) =⇒ A−1b ∼ NRk

(
0,A−1bA−1

)
,

we obtain

√
n(b̂− b)

d−−−→
n→∞

NRk (0, b) =⇒ A−1b ∼ NRk

(
0,A−1bA−1

)
.
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