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1 GLS(cont’d)

e Reiew of GLS

Consider the case of the linear heteroscedastic model.
y=Xb+u, (1)
where y € R™!, X € R™¥_ There are important assumptions as follows.
GH1 E[u|X] = 0.
GH2 Var(u|X) = > 0.
GH3 X'X > 0.

Under the assumptions GH1-GH3, the OLS estimator is NOT a BLUE. In place of the
OLSE, GLSE is the unbiased linear estimator with the minimal variance.

bars = (X'Q7'X)IX'Q Yy (2)

(End of review)




1.1 GLS—the F Statistic

Suppose the case that we want to test Hy : Rb = r, where R € Mk (R), rank(R) = ¢ < K
and Rbgrs ~ N(Rb,02R(X'Q1 X)) R'). similarly to the case of the OLS, we can derive the
Wald criterion such that:

(Rbars — r){R(X'Q'X) 'R} (Rbors — 1)

o2

WO = X2(q)7 (3)

Since (y* — X*bars) (v — X*bars) /02 ~ x2(n — K), we have:
(y = Xbers)'Q ' (y — Xbows) N

o2

’(n — K).

Here, we can say Z;GLSJ_y — XZA)GLS like in the case of the OLS. Therefore, we have the F
distribution because it is defined as the portion of the two independent random variables which
follow 2 distribution:

7 AY X'QO-1x) 1R 7 _
(y — Xbars)QHy — Xbgrs)/(n — K)
In addition, we can denote the F' statistic as follows by reperesnting ligLs as the constrained
GLS residuals.

fo = s Mars — gL Virs /g %)
0= = ~

s ugrs/(n — K)
e Review of the F' Distribution for OLS and COLS ~

Suppose the case of OLS and COLS. In the case of the COLS, the test statistic fj is
rewritten by the simple representation which we use the residual of OLS and COLS:

. (Rb— rY{R(X'X)"'R'}"{(Rb — r)/K — 1
o i)
= )

where u represents the residual of OLS and @ is the residual of COLS.

(End of review)

N /

2 Me-estimation

An estimator 6 is called an extremum estimator if there is a scalar objective function Q,,(0)
such that

0 maximizes Q,,(0) subject to 6 € ©, (7)

where © € RP is the parameter space, the set of possible parameter values. The objective
function @, (#) depends not only on 6 but also the sample (wq,ws,--- ,w,), where w; is the i
th observation and n is the sample size. The maximum likelihood method and the generalized
method of moments(GMM) estimators are particular extremum estimators. Although we do

not prove, the extremum estimator can be derived under some general conditions®.

1Please see Hayashi(2000):446-447 for details.



One of the extremum estimators explained in Econometrics I is M-estimator. The objective
function of it is a sample average:

n

Qu(0) = =) m(w;0), (8)

i=1

where m(w;; 0) is a real-valued function of w; and . An example of this estimator is MLE
(explained in this session).

3 Introductory Topics of the ML Method

3.1 Maximum Likelihood Estimation

Suppose that X, Xs, -+, X,,: i.i.d. random variables. Here, f0(x;) implies the probability
density function of X, where 6 is a parameter. Then, the maximum likelihood estimator max-
imizes the likelihood function defined as [(6) = [];_, f0(z;). We can rewrite the likelihood by
taking logarithm to the likelihood function as follows:

0)= > loglf0(z,). )

This is called as a log-likelihood function of X. The maximum likelihood estimator is of 6
satisfies the following condition.

~ ~

Definition 3.1. We say that § = 6(X) is a MLE of @ if it satisfies the following condition:

0 = arg max L, (6).
0

In other words, MLE satisfies the following conditions as follows:

0L, (6)
o6

%L, (6)
9000’

=0,

=< 0. (10)

3.2 The Fisher Information

In this subsection, we establish a remarkable inequality called the Cramér—Rao lower bound
which gives a lower bound on the variance of any unbiased estimate. Assume that the log
likelihood function is continuously twice differentiable and the integral of the log likelihood
function is also continuously differentiated twice. Then, we begin with the identity such that
[ fO(x)d\(x) = 1, where \(z) is a Lebesgue measure and take a derivation with respect to 6:

Ofe(x)/00 _ [ log fo(w) ;o
89/f9 YdA(z / £ (o) ———— 1 (x)d)\(x)/—ae fo(z)d\(z) (11)

Olog fo(x)

=El—%

] =0. (12)



Alog fo ()

That is, the expectation of the random variable is equal to 0. By the product derivative

6
of (11) with respect to €' again, we can derive:
d”log fo(z) dlog fo(x) Olog fo(x) _
| o) + | TR i) <o

1(6)

The second term of the (LHS) of this equation can be rewritten as an expectation. We call this
expectation the Fisher information and denote it by 1(6) as follows:

1(6) = Var[Vglog fo()] = —E[Vislogfs(2)], (13)
because of (12) and the formula of the variance, Var(X) = E(X?) — [E(X)]?. In other words,

we use following relationships to derive (13).

/ Pog ) Do gf(x)fe(x)dA(xz _ / T8 (2 1, r)ar(2) = ~EIV3plogfo(a)].

1(9)
/8log fo(z) Olog fo(x)
00 06’
16)

Jo(x)d\(z) = E[(Volog fo(x)])?] = Var[Vilog fy(x)].

Definition 3.2. The Fisher information matrix is defined as
1(0) = —E[Vjslog fo(Xi)] (14)

and we have the equalities

1(0) = E[Vylog fo(X;)Velog fo(X;)] = Var[Vylog fo(X;)]. (15)
o /

3.3 The Cramér—Rao Lower Bound
Note that the following important function is called the score function.

Volg(X) = Vylog fo(x)

a I
Theorem 3.3. Suppose that an unbiased estimator is given by f(X). Then, we can

establish a following relationship:

Var(f(X)) = m =1(0)"". (16)
o " %

Proof. At first, taking the derivative with respect to 6 to the expectation of f(X) as follows:

VoE[f(X)] = / £(2) Vo f0(x)dA(x)

- / £(2)Volog(£0(x)) fO(x)dA(z)
— Cov((X), Valy(X)). (17)



Next, we explain the reason why we can establish (17).

Proof. By definition, we can rewrite Cov( f(X), Vlg(X)) as follows:
Cov({(X), Vala(X)) = [17(2) ~ ELF@)|[Vola(z) — EIValo(a)]} ()0
— [ 7(2) = Ol Talaw) — 017820
_ / F(@)Volo(2) f0()dN (), (18)

because we have the following relationship which is a special case of the formula of the covari-
ance:

E[(X = po)(Y = py)] = E[XY — Y] = E[XY] — i, E[Y] = E[XY]. (19)
[l

In the one dimensional case, we can rewrite (17),

(VoE[f(X)])? = [Cov(f(X), Vals(X))]?
= p*Var(f(X))Var(Vyls(X))
< Var(f (X)) Var(Valg (X)), (20)

with p, which implies the correlation between f(X) and Vyly(X). Remind that we can say
(Cov(£(X), Valo(X))J? = p2Var(f(X))Var(Vols(X)),

by the definition of the correlation coefficient. Since |p| < 1, we have (20). or equivalently, we
have following inequality because we have E[f(X)] = 6 and the derivative of this relationship
w.r.t. 01is 1.

Var(f(X)) > 1

> TEmpL) O @)

This inequality also holds for multi dimensional cases. The Cramér—Rao lower bound is a lower
bound on the variance of estimators. O]

3.4 Example of the ML Method

Suppose the case of the random variable X ~ Ng(0,0?). The likelihood of the each observed

variable x; (i =1,2,--- ,n) is given as follows:
1 (zi — p)°
fO(x;) = QWGGXP[_T] (22)

By taking the logarithm, the above equation is rewritten as follows:

(25 — M)Q‘

1
logfO(z;) = §log27r — logo — 52



Recall that we must minimize ) ., logf60(z;) such that:

Z log f0(z;) = (constant) — nlogo — Z M
i=1

: 202
=1

Therefore, when we estimate p, the first order condition is given as follows:

Y

dZL(% — 'u)Q = _9 Xn:(ivz - N) =

leJ i=1

~ 1 n
and fi = =", @



4 R Excecise

4.1 BPG Test and White Estimator

Here?, we study how to test the heteroscedasticity and correct it. Usually, we do not know
whether the model is heteroscedastic. In this case, we apply the Breusch=Pagan=Godfrey(BPG)
test.

e The BPG Test ™~

Suppose that the variance of the regression model is represented as follows:

af:a0+a1Z1i+---+apri where i1 =1,2,--- . n.

The null hypothesis is Hy : g = ay =+ = o, = 0.
J

The Imtest package is useful to perform the BPG test. After checking the the model has

heteroscedasticity, we estimate the White heteroscedasticity consistent estimator.
s The White Estimator ~

In the heteroscedasticity model, the OLS estimator is still unbiased, consistent, and asymp-
totically normally distributed. Then, the variance-covariance matrix of the OLSE is given

as follows:
Var(h) = (X'X) ' X'QX (X'X) 7.

Here, we estimate X'Q2X by using the residuals of OLS. Then, we can estimate the asymp-
totic variance of OLSE®.

Est. Asy. Var(b) = (X'X)™ ) (fwi)(X'X) 7"

=1

By using this method, we can use the Z statistic for the hypothesis test.

“More details of these topics is explained in Greene(2011), Chapter9

N /

4.2 Result of Estimation

In this class, we use the data of the population in Japan and the budgets for the libraries in

each prefectures. Consider the following regression model:
(Budget); = o + f(Population); + u;,

where 7 represents the order of the prefectures in the JIS X 0401 code. The data is uploaded in
Prof. Okumura’s(Univ. Mie) web page 3. Usually, the White estimator is applied to the large
sample. Although we cannot say this example is the large sample case definitely, we introduce
this method for reference. R code is given as follows. The Imtest and the sandwich package is
useful to the estimation.

2These topics are not the coverages of the Econometrics I classes.
SHAIEE [EANEEZMAER— LR=I- 0 A0 EGE IR 7 — £ https://oku.edu.mie-u.ac.jp/ oku-
mura/stat/prefectures.html. (FA&FEEH 2019/6/7)



library(lmtest)

library (sandwich)

#Today, we check the reg. model has the heterosce. or not.
#After testing the model, we introduce the White correction.

#Usually, the White estimator is applied to the large sample.
#Although we cannot say this example is the large samples definitely,
#we introduce this method for reference.

#The data is uploaded in Prof. Okumura’s(Univ. Mie) web page,
#Pop 1is the population of each prefectures in Japan.
#Y2009 is the budget for the libraries in each pref.

kenmei = cdtimE (", HHRE ", SFE v, BEEr, BEE PR
nn, *E’%ﬁ!\‘nu’ E'j"-\?j;ﬁl/_%un’ 1:;]3*7'(;%"", ﬁ/%/[—%"", iﬁi/[_%uu,:':%/l_%

me, BEER, FERJIR e, FRR, BB, GIIR  HEHIR

v AU R R L IR =

nn R SCRRE KB, STHER AR FTLIR
SR B R R LR B

L IR R R R PR B

wn BRI, KA R BRI, R )

-

population = c(5506419, 1373339, 1330147, 2348165, 1085997,
1168924, 2029064, 2969770, 2007683, 2008068, 7194556,
6216289, 13159388, 9048331, 2374450, 1093247, 1169788,
806314, 863075, 2152449,2080773, 3765007, 7410719,

1854724, 1410777, 2636092, 8865245, 5588133, 1400728,
1002198, 588667, 717397, 1945276, 2860750, 1451338,

785491, 995842, 1431493, 764456, 5071968, 849788,

1426779, 1817426, 1196529, 1135233, 1706242, 1392818)

Y2009 = c(39971, 57946, 32853, 38735, 33457, 26141,
38478, 33233, 30389, 40300, 68214, 104662, 319651,
56857, 50000, 41562, 33388, 76735, 45842, 40191,
50872, 97551, 82558, 37100, 67390, 52984, 120266,
28197 ,58327, 58623, 102056, 53138, 174482, 45093,
50449, 32305, 30263, 23816, 25615, 70935, 53032,
64209, 34625, 47917, 46304, 44273, 23288)

dataset<-data.frame (Pop=population,lib=Y2009)
1lib.1m<-1m(lib~Pop,data=dataset)

bptest (1ib.1m)
#H_O:homosce. / p value is 0.0002403; H_O is rejected.

#We can estimate and test White (1980)°’s estimator
#by using the sandwich package.
coeftest (lib.1lm, df = Inf, vcov = vcovHC(lib.1lm, type = "HCO0"))

The result of the estimation is given as follows.

Table 1: The 7 test
Estimate  Std. Error =z value Pr(> |z|)

(Intercept) 2.8231e+04 1.0803e+04 2.6134 0.008966**
Population 1.1381e-02  4.8396e-03  2.3516  0.018692*

Signif. codes: 0 ° 7 0.001 “**70.01 “*70.05°.°0.1° "1




