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1 GLS(cont’d)

Reiew of GLS� �
Consider the case of the linear heteroscedastic model.

y = Xb+ u, (1)

where y ∈ Rn×1, X ∈ Rn×K . There are important assumptions as follows.

GH1 E[u|X] = 0.

GH2 Var(u|X) = Ω ≻ 0.

GH3 X ′X ≻ 0.

Under the assumptions GH1-GH3, the OLS estimator is NOT a BLUE. In place of the

OLSE, GLSE is the unbiased linear estimator with the minimal variance.

b̂GLS = (X ′Ω−1X)−1X ′Ω−1y (2)

(End of review)� �
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1.1 GLS–the F Statistic

Suppose the case that we want to test H0 : Rb = r, where R ∈ Mq×K(R), rank(R) = q ≤ K

and Rb̂GLS ∼ N(Rb, σ2R(X ′Ω−1X)−1)R′). similarly to the case of the OLS, we can derive the

Wald criterion such that:

W0 =
(Rb̂GLS − r)′{R(X ′Ω−1X)−1R′}−1(Rb̂GLS − r)

σ2
∼ χ2(q), (3)

Since (y∗ −X∗b̂GLS)
′(y∗ −X∗b̂GLS)/σ

2 ∼ χ2(n−K), we have:

(y −Xb̂GLS)
′Ω−1(y −Xb̂GLS)

σ2
∼ χ2(n−K).

Here, we can say b̂GLS⊥y − Xb̂GLS like in the case of the OLS. Therefore, we have the F

distribution because it is defined as the portion of the two independent random variables which

follow χ2 distribution:

f =
(Rb̂GLS − r)′{R(X ′Ω−1X)−1R′}−1(Rb̂GLS − r)/q

(y −Xb̂GLS)′Ω−1(y −Xb̂GLS)/(n−K)
∼ F (q, n−K). (4)

In addition, we can denote the F statistic as follows by reperesnting ˙̂uGLS as the constrained

GLS residuals.

f0 =
˙̂u′
GLSΩ

−1 ˙̂uGLS − û′
GLSΩ

−1ûGLS/q

û′
GLSΩ

−1ûGLS/(n−K)
(5)

Review of the F Distribution for OLS and COLS� �
Suppose the case of OLS and COLS. In the case of the COLS, the test statistic f0 is

rewritten by the simple representation which we use the residual of OLS and COLS:

f0 =
(Rb̂− r)′{R(X ′X)−1R′}−1(Rb̂− r)/K − 1

û′û/(n−K)

=
ũ′ũ− û′û/q

û′û/(n−K)
, (6)

where û represents the residual of OLS and ũ is the residual of COLS.

(End of review)� �
2 M-estimation

An estimator θ̂ is called an extremum estimator if there is a scalar objective function Qn(θ)

such that

θ̂ maximizes Qn(θ) subject to θ ∈ Θ, (7)

where Θ ∈ Rp is the parameter space, the set of possible parameter values. The objective

function Qn(θ) depends not only on θ but also the sample (w1, w2, · · · , wn), where wi is the i

th observation and n is the sample size. The maximum likelihood method and the generalized

method of moments(GMM) estimators are particular extremum estimators. Although we do

not prove, the extremum estimator can be derived under some general conditions1.

1Please see Hayashi(2000):446-447 for details.
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One of the extremum estimators explained in Econometrics I is M-estimator. The objective

function of it is a sample average:

Qn(θ) =
1

n

n∑
i=1

m(wi; θ), (8)

where m(wi; θ) is a real-valued function of wi and θ. An example of this estimator is MLE

(explained in this session).

3 Introductory Topics of the ML Method

3.1 Maximum Likelihood Estimation

Suppose that X1, X2, · · · , Xn: i.i.d. random variables. Here, fθ(xi) implies the probability

density function of X, where θ is a parameter. Then, the maximum likelihood estimator max-

imizes the likelihood function defined as l(θ) =
∏n

i=1 fθ(xi). We can rewrite the likelihood by

taking logarithm to the likelihood function as follows:

Ln(θ) ≡
1

n

n∑
i=1

log[fθ(xi)]. (9)

This is called as a log-likelihood function of X. The maximum likelihood estimator is of θ

satisfies the following condition.� �
Definition 3.1. We say that θ̂ = θ̂(X) is a MLE of θ if it satisfies the following condition:

θ̂ = arg max
θ

Ln(θ).� �
In other words, MLE satisfies the following conditions as follows:

∂Ln(θ)

∂θ
= 0,

∂2Ln(θ)

∂θ∂θ′
≺ 0. (10)

3.2 The Fisher Information

In this subsection, we establish a remarkable inequality called the Cramér–Rao lower bound

which gives a lower bound on the variance of any unbiased estimate. Assume that the log

likelihood function is continuously twice differentiable and the integral of the log likelihood

function is also continuously differentiated twice. Then, we begin with the identity such that∫
fθ(x)dλ(x) = 1, where λ(x) is a Lebesgue measure and take a derivation with respect to θ:

∂

∂θ

∫
fθ(x)dλ(x) =

∫
∂fθ(x)/∂θ

fθ(x)
fθ(x)dλ(x) =

∫
∂log fθ(x)

∂θ
fθ(x)dλ(x) (11)

= E[
∂log fθ(x)

∂θ
] = 0. (12)
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That is, the expectation of the random variable ∂logfθ(x)
∂θ

is equal to 0. By the product derivative

of (11) with respect to θ′ again, we can derive:∫
∂2log fθ(x)

∂θ∂θ′
fθ(x)dλ(x) +

∫
∂logfθ(x)

∂θ

∂log fθ(x)

∂θ′
fθ(x)dλ(x)︸ ︷︷ ︸

I(θ)

= 0.

The second term of the (LHS) of this equation can be rewritten as an expectation. We call this

expectation the Fisher information and denote it by I(θ) as follows:

I(θ) = Var[∇θlogfθ(x)] = −E[∇2
θθ′ logfθ(x)], (13)

because of (12) and the formula of the variance, Var(X) = E(X2) − [E(X)]2. In other words,

we use following relationships to derive (13).∫
∂log fθ(x)

∂θ

∂log fθ(x)

∂θ′
fθ(x)dλ(x)︸ ︷︷ ︸

I(θ)

= −
∫

∂2log fθ(x)

∂θ∂θ′
fθ(x)dλ(x) := −E[∇2

θθ′ logfθ(x)],

∫
∂log fθ(x)

∂θ

∂log fθ(x)

∂θ′
fθ(x)dλ(x)︸ ︷︷ ︸

I(θ)

= E[(∇θlogfθ(x)])
2] = Var[∇θlogfθ(x)].

� �
Definition 3.2. The Fisher information matrix is defined as

I(θ) = −E[∇2
θθ′ log fθ(Xi)] (14)

and we have the equalities

I(θ) = E[∇θlog fθ(Xi)∇θ′ log fθ(Xi)] = Var[∇θlog fθ(Xi)]. (15)� �
3.3 The Cramér–Rao Lower Bound

Note that the following important function is called the score function.

∇θlθ(X) = ∇θlog fθ(x)� �
Theorem 3.3. Suppose that an unbiased estimator is given by f(X). Then, we can

establish a following relationship:

Var(f(X)) ≥ 1

−E[∇2
θθlθ(x)]

= I(θ)−1. (16)

� �
Proof. At first, taking the derivative with respect to θ to the expectation of f(X) as follows:

∇θE[f(X)] =

∫
f(x)∇θfθ(x)dλ(x)

=

∫
f(x)∇θlog(fθ(x))fθ(x)dλ(x)

= Cov(f(X),∇θlθ(X)). (17)
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Next, we explain the reason why we can establish (17).

Proof. By definition, we can rewrite Cov(f(X),∇θlθ(X)) as follows:

Cov(f(X),∇θlθ(X)) =

∫
[f(x)− E[f(x)]][∇θlθ(x)− E[∇θlθ(x)]]fθ(x)dλ(x)

=

∫
[f(x)− θ][∇θlθ(x)− 0]fθ(x)dλ(x)

=

∫
f(x)∇θlθ(x)fθ(x)dλ(x), (18)

because we have the following relationship which is a special case of the formula of the covari-

ance:

E[(X − µx)(Y − µy)] = E[XY − µxY ] = E[XY ]− µxE[Y ] = E[XY ]. (19)

In the one dimensional case, we can rewrite (17),

(∇θE[f(X)])2 = [Cov(f(X),∇θlθ(X))]2

= ρ2Var(f(X))Var(∇θlθ(X))

≤ Var(f(X))Var(∇θlθ(X)), (20)

with ρ, which implies the correlation between f(X) and ∇θlθ(X). Remind that we can say

[Cov(f(X),∇θlθ(X))]2 = ρ2Var(f(X))Var(∇θlθ(X)),

by the definition of the correlation coefficient. Since |ρ| ≤ 1, we have (20). or equivalently, we

have following inequality because we have E[f(X)] = θ and the derivative of this relationship

w.r.t. θ is 1.

Var(f(X)) ≥ 1

−E[∇2
θθlθ(X)]

= I(θ)−1 (21)

This inequality also holds for multi dimensional cases. The Cramér–Rao lower bound is a lower

bound on the variance of estimators.

3.4 Example of the ML Method

Suppose the case of the random variable X ∼ NR(0, σ
2). The likelihood of the each observed

variable xi (i = 1, 2, · · · , n) is given as follows:

fθ(xi) =
1√
2πσ

exp[−(xi − µ)2

2σ2
] (22)

By taking the logarithm, the above equation is rewritten as follows:

logfθ(xi) =
1

2
log2π − logσ − (xi − µ)2

2σ2
.
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Recall that we must minimize
∑n

i=1 logfθ(xi) such that:

n∑
i=1

logfθ(xi) = (constant)− nlogσ −
n∑

i=1

(xi − µ)2

2σ2
.

Therefore, when we estimate µ, the first order condition is given as follows:

d
∑n

i=1(xi − µ)2

dµ
= −2

n∑
i=1

(xi − µ) = 0,

and µ̂ = 1
n

∑n
i=1 xi.
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4 R Excecise

4.1 BPG Test and White Estimator

Here2, we study how to test the heteroscedasticity and correct it. Usually, we do not know

whether the model is heteroscedastic. In this case, we apply the Breusch=Pagan=Godfrey(BPG)

test.
The BPG Test� �

Suppose that the variance of the regression model is represented as follows:

σ2
i = α0 + α1Z1i + · · ·+ αpZpi where i = 1, 2, · · · , n.

The null hypothesis is H0 : α1 = α2 = · · · = αp = 0.� �
The lmtest package is useful to perform the BPG test. After checking the the model has

heteroscedasticity, we estimate the White heteroscedasticity consistent estimator.

The White Estimator� �
In the heteroscedasticity model, the OLS estimator is still unbiased, consistent, and asymp-

totically normally distributed. Then, the variance-covariance matrix of the OLSE is given

as follows:

Var(b̂) = (X ′X)−1X ′ΩX(X ′X)−1.

Here, we estimate X ′ΩX by using the residuals of OLS. Then, we can estimate the asymp-

totic variance of OLSEa.

Est. Asy. Var(b̂) = (X ′X)−1

n∑
i=1

(x′
ixiûi

2)(X ′X)−1.

By using this method, we can use the Z statistic for the hypothesis test.

aMore details of these topics is explained in Greene(2011), Chapter9� �
4.2 Result of Estimation

In this class, we use the data of the population in Japan and the budgets for the libraries in

each prefectures. Consider the following regression model:

(Budget)i = α + β(Population)i + ui,

where i represents the order of the prefectures in the JIS X 0401 code. The data is uploaded in

Prof. Okumura’s(Univ. Mie) web page 3. Usually, the White estimator is applied to the large

sample. Although we cannot say this example is the large sample case definitely, we introduce

this method for reference. R code is given as follows. The lmtest and the sandwich package is

useful to the estimation.

2These topics are not the coverages of the Econometrics I classes.
3奥村晴彦「奥村晴彦研究室ホームページ–いろいろな都道府県別データ」https://oku.edu.mie-u.ac.jp/ oku-

mura/stat/prefectures.html. (最終閲覧日 2019/6/7)
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library(lmtest)

library(sandwich)

#Today , we check the reg. model has the heterosce. or not.

#After testing the model , we introduce the White correction.

#Usually , the White estimator is applied to the large sample.

#Although we cannot say this example is the large samples definitely ,

#we introduce this method for reference.

#The data is uploaded in Prof. Okumura ’s(Univ. Mie) web page ,

#Pop is the population of each prefectures in Japan.

#Y2009 is the budget for the libraries in each pref.

kenmei = c北海道("", 青森県"", 岩手県"", 宮城県"", 秋田県"",山形県
"", 福島県"", 茨城県"", 栃木県"", 群馬県"", 埼玉県"",千葉県
"", 東京都"", 神奈川県"", 新潟県"", 富山県"", 石川県"",福井県
"", 山梨県"", 長野県"", 岐阜県"", 静岡県"", 愛知県"",三重県
"", 滋賀県"", 京都府"", 大阪府"", 兵庫県"", 奈良県"",和歌山県
"", 鳥取県"", 島根県"", 岡山県"", 広島県"", 山口県"",徳島県
"", 香川県"", 愛媛県"", 高知県"", 福岡県"", 佐賀県"",長崎県
"", 熊本県"", 大分県"", 宮崎県"", 鹿児島県"", 沖縄県"")

population = c(5506419 , 1373339 , 1330147 , 2348165 , 1085997 ,

1168924 , 2029064 , 2969770 , 2007683 , 2008068 , 7194556 ,

6216289 , 13159388 , 9048331 , 2374450 , 1093247 , 1169788 ,

806314 , 863075 , 2152449 ,2080773 , 3765007 , 7410719 ,

1854724 , 1410777 , 2636092 , 8865245 , 5588133 , 1400728 ,

1002198 , 588667 , 717397 , 1945276 , 2860750 , 1451338 ,

785491 , 995842 , 1431493 , 764456 , 5071968 , 849788 ,

1426779 , 1817426 , 1196529 , 1135233 , 1706242 , 1392818)

Y2009 = c(39971 , 57946, 32853, 38735, 33457, 26141,

38478, 33233, 30389, 40300, 68214, 104662 , 319651 ,

56857, 50000, 41562, 33388, 76735, 45842, 40191,

50872, 97551, 82558, 37100, 67390, 52984, 120266 ,

28197 ,58327 , 58623 , 102056 , 53138 , 174482 , 45093 ,

50449, 32305, 30263, 23816, 25615, 70935, 53032,

64209, 34625, 47917, 46304, 44273, 23288)

dataset <-data.frame(Pop=population ,lib=Y2009)

lib.lm<-lm(lib~Pop ,data=dataset)

bptest(lib.lm)

#H_0:homosce. / p value is 0.0002403; H_0 is rejected.

#We can estimate and test White (1980) ’s estimator

#by using the sandwich package.

coeftest(lib.lm , df = Inf , vcov = vcovHC(lib.lm , type = "HC0"))

The result of the estimation is given as follows.

Table 1: The Z test
Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.8231e+04 1.0803e+04 2.6134 0.008966**

Population 1.1381e-02 4.8396e-03 2.3516 0.018692*

Signif. codes: 0‘ ***’ 0.001‘ ** ’0.01‘ * ’0.05‘ . ’0.1‘ ’1
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