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1 M–Estimation

This topic is challenging for you. If you interested in m-estimation or large sample test or
so, read Newey and Mcfadden (1994). You can find this pdf in the internet.

1.1 Definition of the M–Estimator

Letm : Rk×Θ → R be a real–valued function of the random vector Xi ∈ Rk for i ∈ {1, . . . , n}
and the parameter vector θ ∈ Θ where Θ denotes the parameter space and is a subset of
Rp. An M–estimator of the parameter θ solves the problem

arg max
θ∈Θ

Mn(θ) := max
θ∈Θ

1

n

n∑
i=1

m(Xi, θ), (1)

assuming that a solution, called θ̂ = θ̂(X1, . . . , Xn), exists.

Remark 1.1 (Dependency of θ on Xi for i ∈ {1, . . . , n}). What is really important is that
the parameter θ which we estimate via the M–estimation depends on the observed data (and
its size). However, the devision by n, while needed for the theoretical development, does not
affect the maximisation problem. Also, The maximisation problem can be transformed into
the minimisation one without loss of generality.

Then the parameter vector θ0 is assumed to uniquely solve the population level problem

arg max
θ∈Θ

E[m(X, θ)]. (2)

We will focus on “how we can translate the fact that θ0 solves (2) into the consistency
of the M–estimator θ̂ which solves (1).” Since for each θ ∈ Θ, m(Xi, θ) for i ∈ {1, . . . , n}
is just an i.i.d. sequence, the weak law of large numbers implies that

1

n

n∑
i=1

m(Xi, θ)
p−−−→

n→∞
E[m(X, θ)], (3)

under very weak finite moment assumptions. Thus, from the fact that θ̂ maximises the
function on the L.H.S. of (3) and θ0 on the R.H.S. of (3), it seems plausible that θ̂

p−−−→
n→∞

θ0,

which means the consistency of θ̂.

To make this informal argument correct, there are essentially two issues to address. The first
is identifiability of θ0, which is purely a population level issue. The second is the sense in
which the convergence in (3) happens in different values of θ in Θ.

1.2 Identifiability

We set the value θ0 so that it solves (2). However, we do not argue that θ0 is always the
unique solution of (2). To obtain the unique solution, the identification requires that for all
θ ∈ Θ, θ ̸= θ0, θ0 be the unique solution:

E[m(X, θ0)] > E[m(X, θ)] (4)
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1.3 Uniformly Convergence

(3) indicates the pointwise convergence in probability. However, this convergence is
not sufficient for consistency, which means that it is not enough to simply invoke the usual
weak law of large numbers at each θ ∈ Θ. Instead, uniform convergence in probability
is sufficient.� �
Definition 1.1 (Uniform Weak Law of Large Numbers). 1

n

∑n
i=1 m(Xi, θ) converges uni-

formly in probability to E[m(X, θ)] means

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

m(Xi, θ)− E[m(X, θ)]

∣∣∣∣∣ p−−−→
n→∞

0. (5)

� �
We can now state a theorem concerning uniform convergence appropriate for the random
sampling environment.� �
Theorem 1.1. Let X be a random vector taking values in Rk, let Θ be a subset on Rd,
and let m : Rk ×Θ → R be a real–valued function. Assume that

(a) Θ is compact;

(b) For each θ ∈ Θ, m(·, θ) is Borel measurable on Rk;

(c) For each X ∈ Rk, m(X, ·) is continuous on Θ;

(d) |m(X, θ)| ≤ b(X) for all θ ∈ Θ, where b is a nonnegative function on Rk such that
E[b(X)] < ∞.

Then (5) holds.� �
1.4 Consistency for M–Estimators

According to the above setting, we have the following results.� �
Theorem 1.2 (Consistency of M–Estimators). Under the assumptions of Uniform Weak
Law of Large Numbers, assume that the identification assumption holds. Then a random
vector, denoted as θ, solves (1), and θ̂

p−→ θ0.� �
Proof. Let θ̂ = arg max

θ∈Θ
Mn(θ). Then,

Mn(θ̂) ≥ Mn(θ0),

by definition. Also,

M(θ0)−M(θ̂) = Mn(θ0)−M(θ̂) +M(θ0)−Mn(θ0)

≤ Mn(θ̂)−M(θ̂) +M(θ0)−Mn(θ0)

≤ sup
θ∈Θ

|Mn(θ)−M(θ)|+M(θ0)−Mn(θ0)
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Therefore, for all δ > 0,

M(θ0)−M(θ̂) > δ
p−−−→

n→∞
0 ⇐⇒ P

(
M(θ̂) < M(θ0)− δ

)
p−−−→

n→∞
0.

By the assumption that for each X ∈ Rk, m(X, ·) is continuous on Θ, ∀ε > 0, ∃δ > 0, such
that

∥θ − θ0∥ ≥ ε =⇒ M(θ) < M(θ0)− δ

Hence,

P
(
∥θ̂ − θ0∥ ≥ ε

)
= P

(
M(θ̂) < M(θ0)− δ

)
≤ P

(
Mn(θ̂) < M(θ0)− δ

)
p−−−→

n→∞
0

which proves the consistency of M–estimators.

We end this section with a lemma which we use in the following proof of the asymptotic
normality of an M–estimator.� �
Lemma 1.1. Suppose that θ̂

p−−−→
n→∞

θ0, and assume that a function r : Rk × Θ → Rq

satisfies the same assumptions on m(X, θ) in Theorem 2.1. Then,

1

n

n∑
i=1

r(Xi, θ̂)
p−−−→

n→∞
E[r(X, θ)]. (6)

That is, 1
n

∑n
i=1 r(Xi, θ̂) is a consistent estimator of E[r(X, θ0)].� �

1.5 Asymptotic Normality of M–Estimators

Under additional assumptions on the objective function, we can also show that M–estimators
are asymptotically normally distributed (and converge at the rate

√
n. It turns out that

continuity over the parameter space does not ensure asymptotic normality.� �
Theorem 1.3 (Asymptotic Normality of M–Estimators). In addition to the assumptions
in Theorem 2.2, assume

(a) θ0 is in the interior of Θ;

(b) s(X, ·) is continuously differentiable on the interior of Θ for all X ∈ Rk;

(c) Each element of H(X, θ) is bounded in absolute value by a function b(X), where
E[b(X)] < ∞;

(d) H ≡ E[H(X, θ0)] is positive definite;

(e) E[s(X, θ0)] = 0;

(f) Each element of s(X, θ0) has finite second moment.

Then

√
n(θ̂ − θ0)

d−→ N
(
0, H−1JH−1

)
(7)

where H ≡ E[H(X, θ0)] and J ≡ E[s(X, θ0)s(X, θ0)
′] = V[s(X, θ0)].� �
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Proof. Assume that θ0 is in the interior of Θ, which means that Θ must have nonempty
interior; this assumption is true in most applications. Then, since θ̂

p−−−→
n→∞

θ0, θ̂ is in the

interior of Θ with probability approaching one. If m(X, ·) is continuously differentiable on
the interior Θ, then (with probability approaching one) θ̂ solves the first order condition

n∑
i=1

s(xi, θ̂) = 0, (8)

where s(X, θ) is the p× 1 vector of partial derivatives of m(X, θ) with respect to θ:

s(X, θ)′ = ∇θm(X, θ) ≡
[
∂m(X, θ)

∂θ1
,
∂m(X, θ)

∂θ2
, . . . ,

∂m(X, θ)

∂θp

]
(That is, s(X, θ) is the transpose of the gradient of m(X, θ).) We call s(X, θ) the score of
the objective function m(X, θ).

If m(X, ·) is twice continuously differentiable (with respect to θ), then each row of the
left–hand side of (8) can be expanded about θ0 in a mean–value expansion:

n∑
i=1

s(Xi, θ̂) =
n∑

i=1

s(Xi, θ0) +

(
n∑

i=1

Ḧi

)
(θ̂ − θ0) (9)

Here we note the following theorem related to the mean–value expansion.� �
Theorem 1.4. If f is a real continuous function on [a, b] which is differentiable in (a, b),
then there is a point x ∈ (a, b) at which

f(b)− f(a) = (b− a)f ′(x).� �
The notation Ḧi denotes the p×p Hessian of the objective function m(Xi, ·) with respect
to θ, but with each row of Hi ≡ H(Xi, θ) = ∂2m(Xi, θ)/∂θ∂θ

′ ≡ ∇2
θm(Xi, θ) evaluated at a

different mean value. Each of the p mean values is on the line segment between θ0 and θ̂,
say θ̃i, and we know that each must converge in probability to θ0 (since each is “trapped”
between θ0 and θ̂).

Conbining (8) and (9) and multiplying through by 1/
√
n gives

0 =
1√
n

n∑
i=1

s(Xi, θ0) +

(
1

n

n∑
i=1

Ḧ(Xi, θ̃i)

)
√
n(θ̂ − θ0)

Now, we can apply Lemma 2.3 to get

1

n

n∑
i=1

Ḧ(Xi, θ̃i)
p−−−→

n→∞
E[H(X, θ0)]

(under some moment conditions). If H ≡ E[H(X, θ0)] is nonsingular, then n−1
∑n

i=1 Ḧi

is non–singular with probability approaching one and [n−1
∑n

i=1 Ḧ(Xi, θ̃i)]
−1 p−→ H−1 (by

continuous mapping theorem). Therefore, we can write

√
n(θ̂ − θ0) =

(
1

n

n∑
i=1

Ḧ(Xi, θ̃i)

)−1 [
1√
n

n∑
i=1

s(Xi, θ0)

]
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As we will show, E[s(Xi, θ0)] = 0. Therefore, n−1/2
∑n

i=1 s(Xi, θ0) generally satisfies the
Lindeberg-Lévy central limit theorem, because it is the average of i.i.d. random vectors
with zero mean, multiplied by the usual

√
n. Since op(1) ·Op(1) = op(1), we have

√
n(θ̂ − θ0) =

(
1

n

n∑
i=1

Ḧ(Xi, θ̃i)

)−1 [
1√
n

n∑
i=1

s(Xi, θ0)

]
+ op(1). (10)

This is an important equation. It shows that
√
n(θ̂ − θ0) inherits its limiting distribution

from the average of the scores, evaluate at θ0. The matrix H−1 simply acts as a linear
transformation.

(10) allows us to derive the first–order asymptotic distribution of θ̂. Higher order
representations attempt to reduce the error in the op(1) term in (10); such derivations are
much more complicated than (10) and are beyond the scope of this course. We have essentially
proved the Theorem 2.3.

A key component of Theorem 12.3 is that the score evaluated at θ0 has expected value
zero. In many applications, including NLS, we can show this result directly. But it is also
useful to know that it holds in the abstract M-estimation framework, at least if we can
interchange the expectation and the derivative. To see this point, note that, if θ0 is in the
interior of Θ, and E[m(X, θ)] is differentiable for θ ∈ intΘ, then

∇θE[m(X, θ)]|θ=θ0 = 0. (11)

where ∇θ denotes the gradient with respect to θ. Now, if the derivative and expectations
operator can be interchanged (which is the case quite generally), then (11) implies

E[∇θm(X, θ0)] = E[s(X, θ0)] = 0. (12)

A similar argument shows that, in general, E[m(X, θ0)] is positive semidefinite. If θ0 is
identified, E[H(X, θ0)] is positive definite.

2 Consistency and Asymptotic Normality for the Max-

imum Likelihood Estimator

If we set

• setting m(Xi, θ) := log pθ(Xi), that is,

Mn(θ) := Ln(θ) =
n∑

i=1

log pθ(Xi);

• L(θ) = E [Ln(θ)] = E [log pθ(X)],

in the above setting, then we can state the same theorem as mentioned above.
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2.1 Consistency for the Maximum Likelihood Estimator

Suppose

L(θ) = E [Ln(θ)] = E [log pθ(X)]

exists for θ ∈ Rd. Then we obtain the sollowing theorem.� �
Theorem 2.1. Suppose

(i) L(θ) is uniquely maximised at θ0, idest

∀ϵ > 0, sup
θ : ∥θ−θ0∥≥0

L(θ) < L(θ0);

(ii) Θ is compact;

(iii) L(θ) is continuous;

(iv) sup
θ∈Θ

|Ln(θ)− L(θ)| P−−−→
n→∞

0,

then θ̂
P−−−→

n→∞
θ0.� �

Under the same assumption, we can derive the following theorem.� �
Theorem 2.2. Suppose θ̂

P−→ θ0 and

(i) θ0 belongs to the interior of Θ;

(ii) Ln(θ) is twice continuously differentiable;

(iii)
√
n∇θLn(θ0)

d−−−→
n→∞

NRd (0,Σ);

(iv) H(θ) = E[∇2
θθ′ log pθ(X)] is continuous at θ0 and

sup
θ : ∥θ−θ0∥≤δ

∣∣∇2
θθ′Ln(θ)−H(θ)

∣∣ P−−−→
n→∞

0, with δ > 0;

(v) H = H(θ) is nonsingular,

then

√
n
(
θ̂ − θ0

)
d−−−→

n→∞
NRd

(
0, H−1JH−1

)
. (13)� �

3 Non–linear Optimization Procedure

In this section, we review some concepts related to the non–linear optimization problem.
There are situations where the solution can not be obtained in closed form. In such a
situation, we solve the optimal solution derived from the principal problem by means of
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iterative algorithm instead of searching for the analytic solution. Here we describe the
Newton–Raphson method and scoring method, which is widely used in common.

3.1 Newton–Raphson Method

From the first–order Taylor series expansion around β = β∗, we have

0 = ∇β logL(β) ≈ ∇β logL(β
∗) +∇2

ββ′ logL(β∗)(β − β∗)

Then, by the mean–value theorem (expansion),

∇2
ββ′ logL(β)(β − β∗) = −∇β logL(β

∗)

holds. Thus, assuming that the Hessian matrix is positive definite yields

β − β∗ = −
(
∇2

ββ′ logL(β)
)−1 ∇β logL(β

∗)

This equation yields the following algorithm called Newton–Raphson Method.� �
Algorithm (Newton–Raphson Method).

β(j+1) = β(j) −
(
∇2

ββ′ logL(β(j))
)−1 ∇β logL(β

(j))� �
3.2 Scoring Method

If we take expectation on second derivative of likelihood function, the method is known as
the method of scoring.� �
Algorithm (Scoring Method).

β(j+1) = β(j) −
(
E
[
∇2

ββ′ logL(β(j))
])−1 ∇β logL(β

(j))� �
Note that

I(θ) := −E
[
∇2

ββ′logL(β)
]

is the Fisher information matrix.

Appendix

A Pointwise Convergence and Uniform Convergence

A.1 Pointwise Convergence

The pointwise convergence is defined as below.
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� �
Definition A.1 (Pointwise Convergence). Suppose {fn} for n ∈ {1, 2, . . .} is a sequence
os funcitons defined on a set E, and suppose that the sequence of numbers {fn(x)}
converges for every x ∈ E. We can then define a function f by

lim
n→∞

fn(x) = f(x), (14)

for every x ∈ E.� �
Under these circumstances we say that {fn} converges on E and that f is the limit, or the
limit function, of {fn}. Sometimes we shall use a more descriptive terminology and shall say
that “{fn} converges to f pointwise on E” if (14) holds.

A.2 Uniform Convergence

The definition of the uniform convergence is given as follows.� �
Definition A.2. We say that a sequence functions fn for n ∈ {1, 2, . . .} converges
uniformly on E to a function f if for every ε > 0, there is an integer N such that n ≥ N
implies

|fn(x)− f(x)| < ε, for any x ∈ R

for all x ∈ E.� �
Here we exhibit a well–known fact.� �
Theorem A.1. Suppose

lim
n→∞

fn(x) = f(x).

for every x ∈ E. Put

Mn = sup
x∈E

|fn(x)− f(x)| .

Then fn → f uniformly on E if and only if Mn → 0 as n → ∞.� �
Example A.1. Consider the following sequence of functions:

fn(x) = xe−nx

on I = [0,∞). First, we look at pointwise convergence: fn(0) = 0 and for x > 0 we have that
fn(x) → 0 as n → ∞. Thus fn(x) → 0 pointwise on I. We now need to investigate uniform
convergence. Since the limit function f(x) = 0 we have

sup
x∈[0,∞)

∣∣xe−nx
∣∣ = sup

x∈[0,∞)

xe−nx

since fn(x) ≥ 0 for x ≥ 0. Now we have f ′
n(x) = (1 − nx)e−nx for x > 0 and we see that

f ′
n(x) = 0 when x = 1/n. Further, f ′

n(x) < 0 when 0 < x < 1, and f ′
n(x) > 0 when x > 1, so

we conclude that fn(x) has a maximum at x = 1/n and hence

sup
x∈[0,∞)

xe−nx = fn(
1

n
) =

1

n
e−1 =

1

ne
→ 0
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as n → ∞. So we see that the sequence of functions fn(x) = xe−nx converges uniformly to 0
on the interval I = [0,∞).

Example A.2. Consider the following sequence of functions:

fn(x) =
nx

1 + n2x2

on I = (0,∞). This function converges pointwise to zero since

lim
n→∞

fn(x) = lim
n→∞

nx

1 + n2x2
= lim

n→∞

x

2nx2
= lim

n→∞

1

2nx
= 0

as n → ∞. We now need to investigate the uniform convergence. For any ε < 1/2, when
x = 1/n, ∣∣∣∣fn( 1

n

)
− f

(
1

n

)∣∣∣∣ = 1

2
− 0 > ε

So we see that the sequence of functions {fn(x)} does not converge uniformly to 0 on the
interval I = (0,∞).

B Interior point

Here we mention some concepts concerned with basic set theory which we have used in the
above sections.� �
Definition B.1. Let X be a metric space. All points and sets mentioned below are
understood to be elements and subsets of X.

(a) A neighborhood of a point p is a set Nr(p) consisting of all points q such that
d(p, q) < r. The number r is called the radius of Nr(p).

(b) A point p is an interior point of E if there is a neighborhood N of p such that
N ⊂ E.� �
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