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1 The MLE of a Single Regression Model

Now we consider the MLE of single regression model yZ = a+ fx; + u;, where u;. Assume the
error term, wu; follows the Gaussian distribution: wu; "~ 4N (0,0?). Let us denote the probability
density function of the error term f,(6;u;) for all . In addition, we set f,(6;y;) as the pdf for
y; for all i. By the Change of Variables, we have:
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The parameter vector is § = (a,3,0%) € R®. The joint density function, represented as

fy(@;y1,- -+ ,yn) (or simply f,(0;y)), is rewritten as:
Fo(0591,- - s yn) = f(O501) -~ f (05 9m)

=1 76;w)
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i=1
by the i.i.d assumption. This is the likelihood function. Then, the log-likelihood function is
defined as:
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= —log(2m) — Jlog(0”) — o — ;(% —a — fBx;)”.
Given the observed data (y;,z;), (i = 1,--- ,n,) we consider the maximisation problem of the

log-likelihood function with respect to (3, a, c?) and obtain the following MLE:
Orrp = arg max l,(0;y, x).
e
The first order condition of the maximisation problem is given as follows:
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The solution is denoted as 6 = (& 5 called the MLE. These solutions are given by
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Note that the estimator of the variance is not same as that of the OLS. (biased estimator)
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2 The MLE of a Multiple Regression Model

2.1 Reminder on Change of Variables

Consider the case that we change the density function fx(z) of a random variable X into
another density function of fz(z) of another random variable Z. In this subsection, we learn
the properties of the changed random variable Z.

-

Theorem 2.1. Let fx(z) the density function of the random variable X. Let z = ¢(x)
with ¢(-) continuous and strictly monotone real value function. When the inverse function
of z = ¢(x) is given as & = ¢~(2) = h(z), the following relationship is established:

f2(2) = [W(2)] fx (h(2)). (1)
o /

Proof. Suppose that the distribution function of X as Fx(z) and the distribution function of
Z as Fz(z).

(i) In the case of h'(x) > 0, Fz(z) is rewritten as follows:
F7(z) = Prob(Z < z) = Prob(¢(X) < 2)
= Prob(X < h(z)) = Fx(h(z))
By differentiating both sides of the above equation, we can get fz(z) = h(2) fx(h(2)).
(ii) In the case of h'(x) < 0, Fz(2) is rewritten as
Fz(z) = Prob(Z < z) = Prob(¢(X) < z)
= Prob(X > h(z)) =1 — Prob(X < h(z))
= 1= Fx(h(2)),
because ¢(-) is strictly monotone. By differentiating both sides of the above equation, we
can get fz(z) = —h(2) fx(h(2)).
[

In the multivariate case, if Z = H(X) with H a bijective and differentiable function, the
density of Z is

f2(2) = [x(x)|det(Vyz)],

where the differential is the Jacobian of the inverse of H, evaluated at y.

2.2 Multiple Regression Model

- Multivariate Normal Distribution ~

Let X a n-dimensional random vector. When X follows a multivariate normal distri-
bution, denoted as X ~ Npaimx) (i, %), its pdf is defined as:
1 1

X)=————expl—=(z — )Xz — 2
) = el = S o — ) 2)




Suppose the regression model such that y = x3 + u, where u ~ N(0,021,,). Then, the density
function of w is

1 1,

fulu) = Wexp(—ﬁu u),

By the change of variables from u to y, we have:
fr (W) = fuly — 28)det(Vyu)

— WGXP(_T;@ —xB)(y — xp)),

since we have V,u = I,,. Remind that we can calculate the joint density as the products of
individual densities like the case of the single regression, because conditionally on x;, y;|z; are
iid. Assume that the case of § = (5, 02)’ € RE*+L, The statistical criterion is

f = arg max L, (0;y, x),
0co

with the log-likelihood function

Lo (B;3,) = — Slog(2m0) — - (y — B (y — 26).
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Then, by optimizing the above equation, we have MLEs as follows:

B =('2)Naly), &°= %(y —2B) (y — xf).



3 The Properties of AR(1) Model and its Estimation

The AR(1) process satisfies the following stochastic difference equation:

Y= o1ye1 e, B <1,
where ¢, is the white noise such as:
E(e) =0,
o, k=0

Ve = E(e6,_) =
b= Blaay {o, k4 0.

In this class, we assume that N (0,0%). The conditional mean and variance of y; given

{Yt-1,Yt—2,- -+ } are given as:

E(yt’ytfly Yt—2,° - ) = O1Ye-1;

Var(yt‘ytfly Yt—2,° " ) =0

Thus, {ye|lyi—1,yt—2, - } S N(0,0%) and the conditional distribution of y; is

1 1 9
f(yt|3/t—17yt72a o ) = WGXP(—ﬁ(% - ¢1yt71) )

3.1 Stationary Solution
Rewriting the AR(1) model, we have

Y = P1Yi—1 + €&
= ¢%yt—2 + € + 925%515—1

= Qly—s T &+ P11+ + O] ot

As s goes to infinity, ¢ approaches to zero. Therefore, ¢5y;_s also goes to zero. Thus, we have
the following relationship such that:

oo
§ : s

Yy = ¢1 €t—s-
s=0

In this case, the mean of y; is
E(y) = E(e; + ¢re-1 + ) = 0.
Also, the variance of y; is

Var(y,) = Var(e, + dre,-1 + depo+ - - )
= Var(e;) + Var(¢re—1) + Var(¢le—o) + - --
=1+ ¢+ +---)
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As a consequence, the unconditional distribution of y; is

1 1 )

N e

The joint density of y; is written as

fly) =

f(y17 e ;yn) = f(yh e ayn—1>f(yn|y1a U ;yn—l)
= f(yh e ;yn—2>f(yn—1|y17 e 7yn—2)f(yn|y17 e 7y7l—1)
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In the above equation, we use the Bayes Rule such as fxy = fx|v(z|y)fy(y). The log-likelihood
function is given by

1 2

1
LB yr, - ) = _§log(27rc72/(1 — 1)) - myl

n

1
log(27m0®) — 9292 Z(yt — ¢1y1)”.

=2

n—1

The Newton-Raphson method can be applied to find the optimum.

4 Linear Regression Model with the Auto Correlation

of the Error Term

4.1 GLS Method

The regression model with AR(1) error is defined as
Yo = Bre +up, wp = pup—1 + €
where we assume ¢; ~ N(0,02). Then, the stacked model is

Y = a8+ u, (3)

where we assume u & N (0,0%Q). Now we calculate the variance covariance matrix of the
error term in (3). Assume that the variance of u; is given as Var(u;) = o2 for all ¢ and ¢ is
independent every periods. Moreover, it is independent on the previous error terms. Because
we know Var(u;) = o2 for all ¢t and u; = pu;_; + €, we have

(1—p*o? =02 (4)
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In addition, the auto-covariance of the disturbance term wu; and u;_q is

Cov(ug, us—1) = Cov(pus—1 + €, ur—1)
= E((pui-1 + e)ui—1) — E(pu—1 + €)E(uy—1)
= E((put—1 + €)us1)
= E(pu;_, + u—1€)
= po’.
s 2

Generally, the covariance between u; and wy_g is Cov(ug,us—s) = p°c?. Therefore, we can
represent the variance covariance matrix of the error term by using the above relationship and

(4):

1 ) p2 pn—l
2 2 n—2
Var(u) = N i€p2 p P P = oQ).
pn—l pn—2 . p 1

There exists P that satisfies the (Cholesky) decomposition 2 = PP’. Then, like in the case of
the regression model with the heteroscedasticity error term, multiply P~! on both sides from
the left:

PYY =P 28+ Py

Y*=2x"8+u, (5)
where we represent Y* = (yi,--- ,y*) and * = (2/],--- ,2"))" as follows:
(0 1 —p*y x] \/1—7p2x1
ply — v — ?/5 I — PY1 C Plpm g 96’2‘ | mom R
Yn Yn — PYn—1 xj; Ty — PTp_1

because the result of the decomposition is

1—-p2 0 0 0 0
—p 1 0 0 0
pl— 0 —p 1 0 0
0 0 0 -+ —p 1

By applying the OLS method into (5), we can derive the estimator 3.



4.2 ML Method

Suppose the case that we estimate a MLE of the (3). Let 6, = (p,0?)" and joint distribution
of uy, -+ ,u, is

n
fu(ula"' 7un7 ulv Hf utlutfla'“ 7u1;9>

1 2
V2ma?/(1 — p? )exp(_2062/<1 - 92)%)

n

X ! —exp(— 212 Z( uy — pug_1)?), (7)
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because we have u; ~ N(0, %) Let 0, = (B,6.). Applying a change of variables from
Uy, U tO Y1, -+, Ypn, the joint distribution of yq, -+ ,y, is

fy(yla"' 7yna ) fu( Bmla"' 7yn_ﬁxn;6u)‘vyu‘
1

1 2
T e R
X ﬁexp(—Qiz ((ye = pye—1) — Blae — pr-1))?)

B \/27m2/1(1 - p2)eXp(_2(1;2( 1— p2y — /(1 = p?)Ba1)?)

X ; o2 Z — pyi—1) — Blxy — Pﬂft—l))Q)- (8)

2"
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We thus rewrite the joint density function by using (6).

—-n 1 * *
P+ 13 0,) = (2m02) (1 = ) VPexp(—— (47 — Ba})

€
n

X exp(— 5 S0 — B (9

€ =2

The log-likelihood function is

1
Ln(6y; (g, )i = 1, -+ ,n) = —glog(zmg> + 5log(1 - )

1
D) Z( :_/B‘II)Z

€ t=1

By maximizing this log-likelihood, we can obtain the MLE same as the case of the GLS.

= _ai'a})” Z iy = (@a) 7 @y,
t=1
In the same manner, we can get the MLE of ¢ as follows:

=— Z — Br*)? = %(Y* — 2" B) (Y* —a*p).



