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1 The MLE of a Single Regression Model

Now we consider the MLE of single regression model: yi = α+ βxi + ui, where ui. Assume the

error term, ui follows the Gaussian distribution: ui
i.i.d∼ N(0, σ2). Let us denote the probability

density function of the error term fu(θ; ui) for all i. In addition, we set fy(θ; yi) as the pdf for

yi for all i. By the Change of Variables, we have:

fy(θ; yi) = fu(θ; yi)

∣∣∣∣∂ui

∂yi

∣∣∣∣
=

1√
2πσ2

exp(− 1

2σ2
(yi − α− βxi)

2)

The parameter vector is θ = (α, β, σ2)′ ∈ R3. The joint density function, represented as

fy(θ; y1, · · · , yn) (or simply fy(θ; y)), is rewritten as:

fy(θ; y1, · · · , yn) = f(θ; y1) · · · f(θ; yn)

=
n∏

i=1

f(θ; yi)

=
1

(2πσ2)n/2
exp(− 1

2σ2

n∑
i=1

(yi − α− βxi)
2)

by the i.i.d assumption. This is the likelihood function. Then, the log-likelihood function is

defined as:

ln(θ; (y, x)) := ln(θ; (yi, xi), i = 1, 2, · · · , n)

= −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − α− βxi)
2.

Given the observed data (yi, xi), (i = 1, · · · , n,) we consider the maximisation problem of the

log-likelihood function with respect to (β, α, σ2) and obtain the following MLE:

θ̂MLE = arg max
θ∈Θ

ln(θ; y, x).

The first order condition of the maximisation problem is given as follows:

∂αln(θ̂; (y, x)) =
1

2σ̂2

n∑
i=1

(yi − α̂− β̂xi) = 0,

∂βln(θ̂; (y, x)) =
1

2σ̂2

n∑
i=1

(yi − α̂− β̂xi)xi = 0,

∂σ2ln(θ̂; (y, x)) = −n

2

1

σ̂2
+

1

2(σ̂2)2

n∑
i=1

(yi − α̂− β̂xi)
2 = 0.

The solution is denoted as θ̂ = (α̂, β̂, σ̂2)′, called the MLE. These solutions are given by

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

α̂ = ȳ − β̂x̄,

σ̂2 =
1

n

n∑
i=1

(yi − α̂− β̂xi)
2.

Note that the estimator of the variance is not same as that of the OLS. (biased estimator)
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2 The MLE of a Multiple Regression Model

2.1 Reminder on Change of Variables

Consider the case that we change the density function fX(x) of a random variable X into

another density function of fZ(z) of another random variable Z. In this subsection, we learn

the properties of the changed random variable Z.� �
Theorem 2.1. Let fX(x) the density function of the random variable X. Let z = ϕ(x)

with ϕ(·) continuous and strictly monotone real value function. When the inverse function

of z = ϕ(x) is given as x = ϕ−1(z) = h(z), the following relationship is established:

fZ(z) = |h′(z)|fX(h(z)). (1)� �
Proof. Suppose that the distribution function of X as FX(x) and the distribution function of

Z as FZ(z).

(i) In the case of h′(x) > 0, FZ(z) is rewritten as follows:

FZ(z) = Prob(Z ≤ z) = Prob(ϕ(X) ≤ z)

= Prob(X ≤ h(z)) = FX(h(z))

By differentiating both sides of the above equation, we can get fZ(z) = h(z)′fX(h(z)).

(ii) In the case of h′(x) < 0, FZ(z) is rewritten as

FZ(z) = Prob(Z ≤ z) = Prob(ϕ(X) ≤ z)

= Prob(X ≥ h(z)) = 1− Prob(X ≤ h(z))

= 1− FX(h(z)),

because ϕ(·) is strictly monotone. By differentiating both sides of the above equation, we

can get fZ(z) = −h′(z)fX(h(z)).

In the multivariate case, if Z = H(X) with H a bijective and differentiable function, the

density of Z is

fZ(z) = fX(x)|det(∇yx)|,

where the differential is the Jacobian of the inverse of H, evaluated at y.

2.2 Multiple Regression Model

Multivariate Normal Distribution� �
Let X a n-dimensional random vector. When X follows a multivariate normal distri-

bution, denoted as X ∼ NRdim(X)(µ,Σ), its pdf is defined as:

f(X) =
1

(2π)
n
2 |Σ| 12

exp[−1

2
(x− µ)′Σ−1(x− µ)] (2)

.� �
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Suppose the regression model such that y = xβ + u, where u ∼ N(0, σ2In). Then, the density

function of u is

fu(u) =
1

(2πσ2)n/2
exp(− 1

2σ2
u′u),

By the change of variables from u to y, we have:

fY (y) = fu(y − xβ)det(∇yu)

=
1

(2πσ2)n/2
exp(− 1

2σ2
(y − xβ)′(y − xβ)),

since we have ∇yu = In. Remind that we can calculate the joint density as the products of

individual densities like the case of the single regression, because conditionally on xi, yi|xi are

iid. Assume that the case of θ = (β′, σ2)′ ∈ RK+1. The statistical criterion is

θ̂ = arg max
θ∈Θ

Ln(θ; y, x),

with the log-likelihood function

Ln(θ; y, x) = −n

2
log(2πσ2)− 1

2σ2
(y − xβ)′(y − xβ).

Then, by optimizing the above equation, we have MLEs as follows:

β̂ = (x′x)−1(x′y), σ̂2 =
1

n
(y − xβ̂)′(y − xβ̂).

4



3 The Properties of AR(1) Model and its Estimation

The AR(1) process satisfies the following stochastic difference equation:

yt = ϕ1yt−1 + ϵt, |ϕ| < 1,

where ϵt is the white noise such as:

E(ϵt) = 0,

γk = E(ϵtϵt−k) =

{
σ2, k = 0

0, k ̸= 0.

In this class, we assume that ϵt
i.i.d∼ N(0, σ2). The conditional mean and variance of yt given

{yt−1, yt−2, · · · } are given as:

E(yt|yt−1, yt−2, · · · ) = ϕ1yt−1;

Var(yt|yt−1, yt−2, · · · ) = σ2.

Thus, {yt|yt−1, yt−2, · · · }
i.i.d∼ N(0, σ2) and the conditional distribution of yt is

f(yt|yt−1, yt−2, · · · ) =
1√
2πσ2

exp(− 1

2σ2
(yt − ϕ1yt−1)

2).

3.1 Stationary Solution

Rewriting the AR(1) model, we have

yt = ϕ1yt−1 + ϵt

= ϕ2
1yt−2 + ϵt + ϕ2

1ϵt−1

...

= ϕs
1yt−s + ϵt + ϕ1ϵt−1 + · · ·+ ϕs−1

1 ϵt−s+1.

As s goes to infinity, ϕs
1 approaches to zero. Therefore, ϕs

1yt−s also goes to zero. Thus, we have

the following relationship such that:

yt =
∞∑
s=0

ϕs
1ϵt−s.

In this case, the mean of yt is

E(yt) = E(ϵt + ϕ1ϵt−1 + · · · ) = 0.

Also, the variance of yt is

Var(yt) = Var(ϵt + ϕ1ϵt−1 + ϕ2
1ϵt−2 + · · · )

= Var(ϵt) + Var(ϕ1ϵt−1) + Var(ϕ2
1ϵt−2) + · · ·

= σ2(1 + ϕ2
1 + ϕ4

1 + · · · )

=
σ2

1− ϕ2
.
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As a consequence, the unconditional distribution of yt is

f(yt) =
1√

2πσ2/(1− ϕ2
1)
exp(− 1

2σ2/(1− ϕ2
1)
y2t ).

The joint density of yt is written as

f(y1, · · · , yn) = f(y1, · · · , yn−1)f(yn|y1, · · · , yn−1)

= f(y1, · · · , yn−2)f(yn−1|y1, · · · , yn−2)f(yn|y1, · · · , yn−1)

...

= f(y1)
n∏

t=2

f(yt|yt−1, · · · , y1)

=
1√

2πσ2/(1− ϕ2
1)
exp(− 1

2σ2/(1− ϕ2
1)
y21)

×
n∏

t=2

1√
2πσ2

exp(− 1

2σ2
(yt − ϕ1yt−1)

2).

In the above equation, we use the Bayes Rule such as fX,Y = fX|Y (x|y)fY (y). The log-likelihood
function is given by

L(θ; y1, · · · , yn) = −1

2
log(2πσ2/(1− ϕ2

1))−
1

2σ2/(1− ϕ2
1)
y21

− n− 1

2
log(2πσ2)− 1

2σ2

n∑
i=2

(yt − ϕ1yt−1)
2.

The Newton-Raphson method can be applied to find the optimum.

4 Linear Regression Model with the Auto Correlation

of the Error Term

4.1 GLS Method

The regression model with AR(1) error is defined as

yt = βxt + ut, ut = ρut−1 + ϵt

where we assume ϵt ∼ N(0, σ2
ϵ ). Then, the stacked model is

Y = xβ + u, (3)

where we assume u
i.i.d.∼ N(0, σ2Ω). Now we calculate the variance covariance matrix of the

error term in (3). Assume that the variance of ut is given as Var(ut) = σ2 for all t and ϵt is

independent every periods. Moreover, it is independent on the previous error terms. Because

we know Var(ut) = σ2 for all t and ut = ρut−1 + ϵt, we have

(1− ρ2)σ2 = σ2
ϵ . (4)
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In addition, the auto-covariance of the disturbance term ut and ut−1 is

Cov(ut, ut−1) = Cov(ρut−1 + ϵt, ut−1)

= E((ρut−1 + ϵt)ut−1)− E(ρut−1 + ϵt)E(ut−1)

= E((ρut−1 + ϵt)ut−1)

= E(ρu2
t−1 + ut−1ϵt)

= ρσ2.

Generally, the covariance between ut and ut−s is Cov(ut, ut−s) = ρsσ2. Therefore, we can

represent the variance covariance matrix of the error term by using the above relationship and

(4):

Var(u) =
σ2
ϵ

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ ρ2 · · · · · · ρn−2

...
...

. . . . . .
...

ρn−1 ρn−2 · · · ρ 1

 := σ2Ω.

There exists P that satisfies the (Cholesky) decomposition Ω = PP ′. Then, like in the case of

the regression model with the heteroscedasticity error term, multiply P−1 on both sides from

the left:

P−1Y = P−1xβ + P−1u

Y ∗ = x∗β + u∗, (5)

where we represent Y ∗ = (y∗1, · · · , y∗n)′ and x∗ = (x′∗
1, · · · , x′∗

n)
′ as follows:

P−1Y := Y ∗ =


y∗1
y∗2
...

y∗n

 =


√

1− ρ2y1
y2 − ρy1

...

yn − ρyn−1

 , P−1x := x∗ =


x∗
1

x∗
2
...

x∗
n

 =


√

1− ρ2x1

x2 − ρx1

...

xn − ρxn−1

 , (6)

because the result of the decomposition is

P−1 =



√
1− ρ2 0 0 · · · 0 0

−ρ 1 0 · · · 0 0

0 −ρ 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −ρ 1

 .

By applying the OLS method into (5), we can derive the estimator β̂.
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4.2 ML Method

Suppose the case that we estimate a MLE of the (3). Let θu = (ρ, σ2
ϵ )

′ and joint distribution

of u1, · · · , un is

fu(u1, · · · , un; θ) = f(u1; θ)
n∏

t=2

f(ut|ut−1, · · · , u1; θ)

=
1√

2πσ2
ϵ/(1− ρ2)

exp(− 1

2σ2
ϵ/(1− ρ2)

u2
1)

× 1√
2πσ2

ϵ

n−1 exp(−
1

2σ2
ϵ

n∑
t=2

(ut − ρut−1)
2), (7)

because we have ut ∼ N(0, σ2
ϵ

1−ρ2
). Let θy = (β, θ′u)

′. Applying a change of variables from

u1, · · · , un to y1, · · · , yn, the joint distribution of y1, · · · , yn is

fy(y1, · · · , yn; θy) = fu(y1 − βx1, · · · , yn − βxn; θu)|∇yu|

=
1√

2πσ2
ϵ/(1− ρ2)

exp(− 1

2σ2
ϵ/(1− ρ2)

(y1 − βx1)
2)

× 1√
2πσ2

ϵ

n−1 exp(−
1

2σ2
ϵ

n∑
t=2

((yt − ρyt−1)− β(xt − ρxt−1))
2)

=
1√

2πσ2
ϵ/(1− ρ2)

exp(− 1

2σ2
ϵ

(
√
1− ρ2y1 −

√
(1− ρ2)βx1)

2)

× 1√
2πσ2

ϵ

n−1 exp(−
1

2σ2
ϵ

n∑
t=2

((yt − ρyt−1)− β(xt − ρxt−1))
2). (8)

We thus rewrite the joint density function by using (6).

fy(yn, · · · , y1; θy) = (2πσ2
ϵ )

−n/2(1− ρ2)1/2exp(− 1

2σ2
ϵ

(y∗1 − βx∗
1))

× exp(− 1

2σ2
ϵ

n∑
t=2

(y∗t − βx∗
t )

2) (9)

The log-likelihood function is

Ln(θy; (yi, xi), i = 1, · · · , n) = −n

2
log(2πσ2

ϵ ) +
1

2
log(1− ρ2)

− 1

2πσ2
ϵ

n∑
t=1

(y∗t − βx∗
t )

2.

By maximizing this log-likelihood, we can obtain the MLE same as the case of the GLS.

β̃ = (
n∑

t=1

x∗
t
′x∗

t )
−1(

n∑
t=1

x∗
t
′y∗t ) = (x∗′x∗)−1(x∗′y∗).

In the same manner, we can get the MLE of σ2
ϵ as follows:

σ̃ϵ
2 =

1

n

n∑
t=1

(yt
∗ − βxt

∗)2 =
1

n
(Y ∗ − x∗β)′(Y ∗ − x∗β).
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