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1 Review of the Asymptotic Theory

We review the central limit theorems and the asymptotic properties of the OLSE. At first, we

will briefly review of the multivariate central limit theorem. The discussion of this topic is

given in Chapter3 of the main textbook and the Appendix D of Greene(2011).� �
Theorem 1.1. Let {wi : i = 1, 2, . . . } be a sequence of i.i.d. and G × 1 random vectors

such that E(w2
ig) < ∞, g = 1, 2, . . . , G, and E(wi) = µ. Then, {wi : i = 1, 2, . . . } satisfies

the Lindeberg-Levy central limit theorem:

√
n(w̄i − µ)

d−−−→
n→∞

N(0, Q), (1)

where w̄i represents the sample level mean of wi and Q = Var(wi) = E(wiw
′
i) is positive

definite.� �
We can relax the assumption of the sequence wi.� �
Theorem 1.2. Suppose that each {wi : i = 1, 2, . . . } has original mean vector µi and

variance-covariance matrix Var(wi) = Qi. Also, all cross-product third moments of the

multivariate distribution are finite. Let µ̄i =
1
n

∑n
i=1 µi and Q̄i =

1
n

∑n
i=1 Qi. We assume

that lim
n→∞

Q̄i = Q, where Q is a finite, positive definite matrix, and that for every i,

lim
n→∞

(nQ̄i)
−1Qi = lim

n→∞
(

n∑
i=1

Qi)
−1Qi = 0.

With these assumptions, the Lindeberg-Feller Central Limit Theorem is given as follows:

√
n(w̄i − µ̄i)

d−−−→
n→∞

N(0, Q),

where w̄i is the mean of wi.� �
2 Review of the Asymptotic Normality of the M-estimator

2.1 Asymptotic Normality of M-estimator

Recall that we can get the asymptotic normality of the M-estimator through the first order

condition of the optimization problem such that:

1

n

n∑
i=1

s(Xi, θ̂) = 0,

where s(Xi, θ̂) is the Jacobian of the objective function. The expansion of the score

around the true parameter becomes (multiplied by
√
n)

0 =
1√
n

n∑
i=1

s(Xi, θ̂) =
1√
n

n∑
i=1

s(Xi, θ) +

(
1

n

n∑
i=1

Ḧ(Xi, θ̃i)

)
√
n(θ̂ − θ)
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The notation Ḧi denotes the p× p Hessian of the objective function m(Xi, ·) with respect

to θ, but with each row of Hi ≡ H(Xi, θ) = ∇2
θ,θ′m(Xi, θ). Each entrance of the Hessian is

evaluated for a parameter θ̃ between θ and θ̂ and we know that each must converge in probability

to θ (since each is ”trapped” between θ and θ̂). Now, we can apply Lemma 1.1 in the TA session

#10(. . .?) to get

1

n

n∑
i=1

Ḧ(Xi, θ̃i)
p−−−→

n→∞
E[H(X, θ)] (2)

(under some moment conditions).� �
Lemma 2.1. Suppose that θ̂

p−−−→
n→∞

θ, and assume that a function r : Rk×Θ → Rq satisfies

the same assumptions on m(X, θ) in TA session #10(. . .?). Then,

1

n

n∑
i=1

r(Xi, θ̂)
p−−−→

n→∞
E[r(X, θ)]. (3)

That is, 1
n

∑n
i=1 r(Xi, θ̂) is a consistent estimator of E[r(X, θ)].� �

If H ≡ E[H(X, θ)] is nonsingular, then n−1
∑n

i=1 Ḧi is non–singular with probability approach-

ing one and [n−1
∑n

i=1 Ḧ(Xi, θ̃i)]
−1 p−−−→

n→∞
H−1 (by continuous mapping theorem). There-

fore, we can write

√
n(θ̂ − θ) = H−1

[
− 1√

n

n∑
i=1

s(Xi, θ0)

]
+ op(1). (4)

� �
Theorem 2.1 (Asymptotic Normality of M–Estimators). In addition to the assumptions

to derive the Weak Law of Large Numbers and the consistency of M-Estimators in the

lecture note of the TA session #10, assume

(a) θ is in the interior of Θ;

(b) s(X, ·) is continuously differentiable on the interior of Θ for all X ∈ Rk;

(c) Each element of H(X, θ) is bounded in absolute value by a function b(X), where

E[b(X)] < ∞;

(d) H ≡ E[H(X, θ)] is positive definite;

(e) E[s(X, θ)] = 0;

(f) Each element of s(X, θ) has finite second moment.

Then

√
n(θ̂ − θ)

d−−−→
n→∞

N
(
0, H−1JH−1

)
(5)

where H ≡ E[H(X, θ)] and J ≡ E[s(X, θ)s(X, θ)′] = Var[s(X, θ)].� �
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3 M-estimator of the Linear Regression Model

In this section, we analyse the case of the M-estimator of the linear regression model. Also, we

derive the estimator of the asymptotic variance for our convenience in the case of the statistical

test.

3.1 Asymptotic Normality of the M-estimator of the Linear Regres-

sion Model

Suppose the linear regression model such that:

yi = b1xi1 + b2xi2 + · · ·+ bkxik + ui, i = 1, 2, · · · , n, (6)

and we can rewrite this model as follows:

y = xb+ u

⇐⇒

y1
...

yn


︸ ︷︷ ︸
∈Rn

=

x1

...

xn


︸ ︷︷ ︸

∈Mn×k(R)

b1
...

bk


︸ ︷︷ ︸
∈Rk

+

u1

...

un


︸ ︷︷ ︸

∈Rn

 ,

where xi = (xi,1, . . . , xi,k) is a 1 × K vector for i ∈ {1, . . . , n} and b = (b1, . . . , bk)
′ is a k × 1

vector. Then, the optimisation problem to derive the M-estimator is

arg max
θ

1

n

n∑
i=1

1

2
(yi − xilbi)

2 =
1

n

[
1

2
(y − xb)′(y − xb)

]
, (7)

and be careful that the parameter vector is θ = (b, σ2)′. We may find that the objective

function, which is represented as m(Xi, θ), is
1
2n

∑
(yi − xilbi)

2. The first order condition and

second order condition are 1

1

n

n∑
i=1

s(xi, θ) =
1

n

n∑
i=1

xiui;

1

n

n∑
i=1

H(xi, θ) =
1

n

n∑
i=1

xix
′
i. (8)

In addition, for a parameter θ̃ ∈ (θ̂, θ), the Hessian evaluated in θ̃ is

1

n

n∑
i=1

Ḧ(xi, θ̃). (9)

Therefore, in the linear regression case, we can say

√
n(θ̂ − θ) =

(
1

n

n∑
i=1

Ḧ(xi, θ̃)

)−1 [
− 1√

n

n∑
i=1

xiui

]

= H−1

[
− 1√

n

n∑
i=1

xiui

]
+ op(1) (10)

1
∑n

i=1 s(xi, θ) and
∑n

i=1 H(xi, θ) are the Jacobian and Hessian of
[
1
2 (y − xβ)′(y − xβ)

]
.
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Recall that E[s(Xi, θ)] = E[xiui] = 0 (exogenous assumption). Therefore, −n−1/2
∑n

i=1 xiui

satisfies the Lindeberg-Lévy central limit theorem under suitable conditions, because it is

the average of i.i.d. random vectors with zero mean, multiplied by the usual
√
n. By applying

this theorem into the last term of the Eq. (10), we have

√
n

(
− 1

n

n∑
i=1

xiui − 0

)
d−−−→

n→∞
N(0, σ2H);

− 1√
n

n∑
i=1

xiui
d−−−→

n→∞
N(0, σ2H). (11)

Recall that σ2H = Var(x′u). Thus, we can get the asymptotic distribution of the MLE. The

Slutsky’s Theorem is used to derive it.� �
Lemma 3.1 (Slutsky’s Theorem). Suppose a sequence of random vector xn

P−−−→
n→∞

x and

yn
d−−−→

n→∞
c, respectively. Then, we have:

(xn, yn)
d−−−→

n→∞
(x, c). (12)� �

Example.

xn + yn
d−−−→

n→∞
x+ c,

xn

yn

d−−−→
n→∞

x

c

Therefore, we can derive the following result,
√
n(θ̂ − θ)

d−−−→
n→∞

N(0, σ2H−1).

Remind that we use the formula of the conditional variance like in the case of the OLS, because

covariate x are stochastic.

3.2 The Estimator of the Asymptotic Variance of the M-estimator

Now we estimate the asymptotic variance of the M-estimaor in the general case. Recall that

we have Asy. Var[
√
n(θ̂ − θ)] = H−1JH−1, so we can rewrite Asy. Var(θ̂) = 1

n
H−1JH−1. By

the Eq. (2), the estimator of H and J can be derived by the following relationship.

1

n

n∑
i=1

H(xi, θ̂) ≡
1

n

n∑
i=1

Ĥi
p−−−→

n→∞
H

1

n

n∑
i=1

s(Xi, θ̂)s(Xi, θ̂)
′ ≡ 1

n

n∑
i=1

ŝiŝ
′
i

p−−−→
n→∞

J (13)

Thus, the estimator of the asymptotic variance is

Var(θ̂) =
1

n
(

n∑
i=1

Ĥi)
−1(

n∑
i=1

ŝiŝ
′
i)(

n∑
i=1

Ĥi)
−1. (14)

In the case of the linear regression model,

Var(θ̂) =
1

n
(

n∑
i=1

xix
′
i)
−1(

n∑
i=1

xix
′
iû

2
i )(

n∑
i=1

xix
′
i)
−1. (15)

5



Assume we can patition x into x1 and x2, and that θ indexes some feature of the distribution

of x2 given x1. Define

A(x1, θ) ≡ E[H(x, θ)|x1] (16)

While H(x, θ) is generally a function only of x1 and x2, A(x1, θ) is a function only of x1. By the

law of iterated expectations, we have E[A(x1, θ)] = E[A(x, θ)] = J . Therefore, we can derive

another estimator of J as

1

n

n∑
i=1

A(x1i, θ̂) ≡
1

n

n∑
i=1

Âi
p−−−→

n→∞
H. (17)

The above estimator is useful in the case where E[H(x, θ)|x] can be obtained in closed form or

is easily approximated. In the above case, the estimator of the asymptotic variance is

Var(θ̂) =
1

n
(

n∑
i=1

Âi)
−1(

n∑
i=1

ŝiŝ
′
i)(

n∑
i=1

Âi)
−1. (18)

This estimator is used in the case of the NLS (non-linear least square).

4 R Excercise

In this section, we will explain how to use R.2 Here, we use data of the real estate price and

the location of each building in HongKong.3From this data, we analyze the regression model

by using the ML method. We derive the MLE of the following regression model.

(price)i = α + β1(a number of convinience stores)i + β2(housage)i + ui, (19)

where ui ∼ N(0, σ2).

rm(list=ls(all=TRUE))

variableset <-read.csv("Real estate valuation data set.csv",header=T)

variableset <-data.frame(variableset)

houseage <-variableset [,3]

convstore <-variableset [,5]

price <-variableset [,8]

y<-as.vector(price)

x_1 <-as.vector(convstore)

x_2 <-as.vector(houseage)

NROW(price)

const <-rep(1,NROW(price ))

#By using rep function , we can make "i" vector , whose all elements are 1.

#Capital "NROW" can be used in the vec. structure.

x<-cbind(const ,x_1 ,x_2)#Make a matrix "x" of the stacked model.

#E(u_i)=0,Var(u_i)= sigma^2 for all i.

#Parameter vector =(beta ’,sigma^2)’

2The data set used in this class is uploaded in the UCI Machine Learning Repository.
3Yeh, I. C., & Hsu, T. K. (2018). Building real estate valuation models with comparative approach through

case-based reasoning. Applied Soft Computing, 65, 260-271.
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#This is the original code to make the log -likelihood function.

log_likelihood <-function(para){

k<-ncol(x)

n<-nrow(x)

beta <-para [1:k]

sigma_2 <-para[k+1]

-(n/2)* log(2*pi*sigma_2 ) -(1/(2* sigma_2 ))*t((y-x%*% beta ))%*%(y-x%*% beta)

}

k<-ncol(x)

n<-nrow(x)

opt <-optim(par=rep(1,k+1),fn=log_likelihood ,

control=list(fnscale=-1), hessian=TRUE)

#optim function:searching parameters

opt

#Derive the standard error.

se <- diag(sqrt(abs(solve(opt$hessian [1:(k+1), 1:(k+1)]))))

se

lm_house <-lm(y~x_1+x_2)

summary(lm_house)

hat_u <-residuals(lm_house)

hat_var <-solve(n-k)*t(hat_u )%*% hat_u

hat_var

#Results of the mle and olse are similar.

The result of this model is given as bellow. The test statistics of the MLE and how to test

by using R will be explained in the TA session of Large Sample Tests.

Table 1: The Result of the ML Method
Estimate Standard Error

(Intercept) 32.0262912 1.1893170

x1 2.6885753 0.1782664

x2 -0.2853355 0.0460913

(σ2) 113.5939028 7.8736729

Table 2: The Result of the OLS
Estimate Std. Error t value Pr(> |t|)

(Intercept) 32.02251 1.19529 26.791 2e-16 ***

x1 2.69251 0.17916 15.028 2e-16***

x2 -0.28601 0.04632 -6.174 1.6e-09 ***

(σ2) 114.738

Signif. codes: 0‘ ***’0.001‘ ** ’0.01‘ * ’0.05‘ . ’0.1‘ ’1
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