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1 Endogeneity

1.1 Definition of Endogeneity

Now we considered the case E[ui|xi] = 0, or E[ui|xi] = 0. However, there are situations where a
ranodm variable is endogenous, defined as follows.� �
Definition 1.1. A variable xk,i is said to be endogenous if xk,i is correlated with ui.� �

Endogeneity arises mainly for three reasons:

• Omitted variable: Issue when we would like to control for one or more additional variable,
but because of data unavailability, we cannot include them in the regression. Write the error
ui = qi + vi, where vi is a centered error with variance σ2, and qi an additional random
variable. If xk,i is correlated with qi, then xk,i is endogeneous.

• Measurement error: We would like to measure the effect of a variable, say x∗
k,i, but we

can observe only an imperfect measure of it, say xk,i. When plugging xk,i for x
∗
k,i, we put a

measurement error into ui.

• Simultaneity: At least one of the explanatory variables is determined simultaneoulsy along
with yi: if xk,i is dertermined partly as a function of yi, that is,

yi = β0 + x1iβ1 + · · ·+ xki(yi)βk + ui,

xki(yi) = f(yi)

then xk,i and ui are generally correlated.

1.2 Measurement Error

Suppose that the true regression model is y = x̃β0 + u. The observed variable is x = x̃+ v, where
v is called the measurement error. For the element that does not include measurement errors
in x, the corresponding elements in v are zeros.

As a consequence, the regression model using observed variables is

y = xβ0 + (u− vβ0).

The OLS estimate of β0 is

β̂OLS = (x′x)−1(x′y) = β0 + (x′x)−1(x′{u− vβ0}).

To see whether β̂OLS is a consistent estimator of β, we assume the following relations:

• 1
n
x̃′v

P−−−→
n→∞

0. This implies

1

n
x′x =

1

n
[x̃′x̃+ v′v + x̃′v + v′x̃]

=
1

n
x̃′x̃+

1

n
v′v +

1

n
x̃′v +

1

n
v′x̃

P−−−→
n→∞

Σ + Ω,

under the assumptions:

1

n
x̃′x̃

P−−−→
n→∞

Σ and
1

n
v′v

P−−−→
n→∞

Ω.
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• 1
n
v′u

P−−−→
n→∞

0, and 1
n
x̃′u

P−−−→
n→∞

0.

As a consequence, the OLS estimator satisfies

β̂OLS = β0 + (x′x)−1(x′{u− vβ0})
= β0 + (x′x)−1(x̃+ v)′(u− vβ0)

= β0 + (x′x)−1x̃′(u− vβ0) + (x′x)−1v′(u− vβ0)

= β0 + (x′x)−1x̃′u− (x′x)−1x̃′vβ0 + (x′x)−1v′u− (x′x)−1v′vβ0.

Therefore,

plim
n→∞

β̂OLS = plim
n→∞

[
β0 + (

1

n
x′x)−1 1

n
x̃′u− (

1

n
x′x)−1 1

n
x̃′vβ0 + (

1

n
x′x)−1 1

n
v′u− (

1

n
x′x)−1 1

n
v′vβ0

]
= β0 + plim

n→∞
(
1

n
x′x)−1 1

n
x̃′u︸ ︷︷ ︸

P−−−→
n→∞

0

− plim
n→∞

(
1

n
x′x)−1 1

n
x̃′vβ0︸ ︷︷ ︸

P−−−→
n→∞

0

+plim
n→∞

(
1

n
x′x)−1 1

n
v′u︸ ︷︷ ︸

P−−−→
n→∞

0

− plim
n→∞

(
1

n
x′x)−1 1

n
v′vβ0

= β0 − plim
n→∞

{
1

n
(x̃+ v)′(x̃+ v)

}−1
1

n
v′vβ0

= β0 − plim
n→∞

( 1

n
x̃′x̃︸ ︷︷ ︸
P−−−→

n→∞
Σ

+
1

n
v′x̃︸ ︷︷ ︸
P−−−→

n→∞
0

+
1

n
x̃′v︸ ︷︷ ︸
P−−−→

n→∞
0

+
1

n
v′v︸︷︷︸
P−−−→

n→∞
Ω

)−1 1

n
v′v︸︷︷︸
P−−−→

n→∞
Ω

β0

= β0 −
(
Σ + Ω

)−1
Ωβ0,

by the continuous mapping theorem. Hence, we have:

β̂OLS
P−−−→

n→∞
β0 −

(
Σ + Ω

)−1
Ωβ0. (1)

Remark 1.1 (Measurement Error for Response/Dependent Variable). Let us consider the case
that the true regression model becomes

ỹ = xβ0 + u,

and the measurement error exists only in the dependent variable:

y = xβ0 + u, (2)

where y = ỹ + w is the observed variable and w is the measurement error. Then the regression
model is reduced to:

ỹ = xβ0 + u∗ (3)

where u∗ = u−w. In this case, the error term is independent from x̃. Therefore, we can apply the
usual OLS method to derive the estimator since we can consider that w has the same properties
as u(, which allows us to use the OLS method to the regression model). Note that the variacnce
of u∗ is larger than that of u.
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2 Measurement Error: Example

Here we exhibit an example in the case of one explanatery variable. Consider the following regres-
sion model:

yi = α + βxi + ui, xi = x̃i + vi, i = 1, . . . , n.

Let E[x̃i] = µ and V[x̃i] = σ2 for all i ∈ {1, . . . , n} and

x̃ :=


1 x̃1

1 x̃2
...

...
1 x̃n

 ; v :=


0 v1
0 v2
...

...
0 vn

 .

Then, from the fact

x̃′x̃ =

(
1 1 . . . 1
x̃1 x̃2 . . . x̃n

)
1 x̃1

1 x̃2
...

...
1 x̃n

 =


n∑

i=1

1
n∑

i=1

x̃i

n∑
i=1

x̃i

n∑
i=1

x̃2
i

 ,

we obtain

1

n
x̃′x̃ =


1

1

n

n∑
i=1

x̃i

1

n

n∑
i=1

x̃i
1

n

n∑
i=1

x̃2
i

 P−−−→
n→∞

(
1 µ
µ µ2 + σ2

v

)
=: Σ.

since from the Weak Law of Large Numbers,

1

n

n∑
i=1

x̃i
P−−−→

n→∞
E[x̃i] =: µ, and

1

n

n∑
i=1

x̃2
i

P−−−→
n→∞

E[x̃2
i ] = V[x̃i] + (E[x̃i])

2 =: µ2 + σ2

hold. Moreover, with the assumptions V[vi] = σ2
v and E[vi] = 0,

1

n
v′v =

0 0

0
1

n

n∑
i=1

v2i

 P−−−→
n→∞

(
0 0
0 σ2

v

)
=: Ω.

Then, according to Eq. (1), we have(
α̂

β̂

)
P−−−→

n→∞

(
α
β

)
−
((

1 µ
µ µ2σ2

)
+

(
0 0
0 σ2

v

))−1(
0 0
0 σ2

v

)(
α
β

)
=

(
α
β

)
− 1

σ2 + σ2
v

(
−µσ2

vβ
σ2
vβ

)
Consequently, β̂ is not consistent:

β̂OLS
P−−−→

n→∞
β − σ2

v

σ2 + σ2
v

β ̸= β.
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3 Instrumental Variable

In this section we treat instrumental variables estimation, which is probably second only to ordinary
least squares in terms of methods used in empirical economic research.

3.1 Exogenous and Endogeneous

Consider the structual regression model:

yi = β0 + β1xi1 + · · ·+ βkxik + ui, (4)

with E[ui] = 0 and Cov[xij, ui] = 0 for j ≤ k − 1, but xik might be correlated with ui. The
explanatory variables xi1, . . . , xi(k−1) are exogenous but xik is potentially endgeneous in this
equation. The method of instrumental variables (IV) provides a general solution to the problem
of an endogeneous variable. To use the IV approach with xiK endogeneous, we need an observable
variable zi, which should satisfy two conditions

• Cov[zi, ui] = 0 and xi1, . . . , xi(k−1), zi are exogenous;

• xik = δ0 + δ1xi1 + · · ·+ δk−1xi(k−1) + θzi + vi, where the error term vi satisfies E[vi] = 0 and
vi is uncorrelated with xi1, . . . , xi(k−1), zi.

The key assumption is that θ ̸= 0. This condition means that zi is partially correlated with xik

once the other variables xi1, . . . , xi(k−1) have been controlled.
When zi satisfies both assumptions, it is said to be an instrumental variable candidate for xik

(or instrument). Since xi1, . . . , xi(k−1) are uncorrelated with ui, they serve as their own instrument:
the full list of IV variables is the same as the list of exogenous variables.

3.2 Reduced–Form

Plugging

xik = δ0 + δ1xi1 + · · ·+ δk−1xi(k−1) + θzi + vi

into the structural equation

yi = β0 + β1xi1 + · · ·+ βkxik + ui,

we obtain the reduced–form projection:

yi = α0 + α1xi1 + · · ·+ αk−1xi(k−1) + λkzi + wi, (5)

where wi := ui + βkvi is the reduced–form error and

αj := βj + βkδj, j = 1, . . . , k − 1;

λ := βkθ.
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4 Identification Problem

Estimating the structural parameters in (4) is generally more useful than the reduced form pa-
rameters. By idenficication, we can write the βj of Eq. (4) in terms of population moments in
observable variables. To do so, write Eq. (4) as

yi = xiβ + ui,

with xi = (1, xi2, . . . , xik). Write the 1× k exogenous variables as zi = (1, xi2, . . . , xi(k−1), zi). The
assumptions E[ui] = 0 and Cov[xij, ui] = 0 for j ∈ {1, . . . , k − 1} imply the k orthogonality (or
exogeneity) conditions:

E[zi′ui] = 0.

Thus, multiplying yi = xiβ + ui by zi
′ and taking expectations yields

E[zi′xi]β = E[zi′yi],

where E[zi′xi] is a k × k matrix and E[zi′yi] is a k × 1 vector. If E[zi′xi] is non–singular (rank
condition), then we obtain

βIV = (E[zi′xi])
−1 E[zi′yi]. (6)

5 Instrumental Variable Estimator

To derive the previous relationship, we used Cov[zi, ui] = 0 and θ ̸= 0. Indeed, Cov[zi, ui] = 0 ⇐⇒
θ ̸= 0. Thus, according to Eq. (6), the instrument variable estimator is

β̂IV =

(
n∑

i=1

zi
′xi

)−1( n∑
i=1

zi
′yi

)
(7)

The important point is that the condition θ ̸= 0 can be tasted (e.g. student test) but Cov[zi, ui] = 0
must be maintained: indeed the covariance involves the unobservable ui and therefore we cannnot
test anything about Cov[zi, ui].

6 Partial Identification

In general, it is difficult for researchers to identify an instrumental variable (IV). Moreover, even
if an IV is found, it might still be correlated with the error term. To address this issue, we apply
partial identification. In partial identification, we estimate the range (band) of parameters instead
of a specific value (point estimation). If you are interested in partial identification, please read the
following articles:

• Edward E. Leamer (1981) ”Is it a Demand Curve, Or Is It A Supply Curve? Partial
Identification through Inequality Constraints,” The Review of Economics and Statistics,
https://www.jstor.org/stable/1924348

• Nevo, Aviv and Rosen, Adam (2012) ”Identification With Imperfect Instruments,” The Re-
view of Economics and Statistics, https://EconPapers.repec.org/RePEc:tpr:restat:v:
94:y:2012:i:3:p:659-671
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