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1 Deriving the 2SLS Estimator

Consider the regression model such that:

yi = xib+ ui (i = 1, 2, · · · , n), (1)

where xi = (1, xi2, · · · , xiK ) and b ∈ R1×K . Assume that the instrumental variables in (1) are

zi1, · · · , ziM . In addition, the endogeneous variable is xiK . Then, we have 1× (K +M) vector

of the exogeneous variables zi = (1, xi1, · · · , xi(K−1), zi1, · · · , ziM). We can derive the two stage

least square estimator by the following procedure.

1. We consider the stacked regression model y = xb+u. Here, we difine z = (z′1, z
′
2, · · · , z′n)′ ∈

Rn×(K+M), x = (x′
1, x

′
2 · · · , x′

n)
′ ∈ Rn×K , y = (y1, y2, · · · , yn)′ and u = (u1, u2, · · · , un)

′.

2. Regress z on x and derive the fitted values of x:

x̂ = z(z′z)−1z′x = Pzx. (2)

3. Regress x̂ on y. Then, we can derive 2SLS estimator:

b̂2SLS = (x̂′x̂)−1x̂′y. (3)

This is why we call this estimation method 2SLS(: Two Stage Least Squer).

Remind that the 2SLS estimator equals to the IV estimator under some conditions. This will

be explained later.

2 Properties of the 2SLS Estimator

2.1 Consistency

Now we review the consistency of b̂2SLS.� �
Theorem 2.1 (The Consistency of 2SLS estimator). Suppose that we have the following

assumptions:

(ASSUMPTION1) For some 1× L vector zi, E[z′iui] = 0.

(ASSUMPTION2) rank (E[z′izi]) = L, and rank (E[z′ixi]) = K.

Under these assumptions, we have: b̂2SLS
p−−−→

n→∞
b.� �

Proof. By rewriting (3), we have

b̂2SLS = (x̂′x̂)−1x̂′y

= (x′Pzx)
−1x′Pzy

= (x′Pzx)
−1x′Pz((xb+ u))

= (x′Pzx)
−1x′Pzxb+ (x′Pzx)

−1x′Pzu

= b+ (x′z(z′z)−1z′x)−1x′z(z′z)−1z′u. (4)
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In the previous equation, remember that Pz = z(z′z)−1z′.

b̂2SLS = b+

( 1

n

n∑
i=1

x′
izi

)(
1

n

n∑
i=1

z′izi

)−1(
1

n

n∑
i=1

z′ixi

)−1

×

(
1

n

n∑
i=1

x′
izi

)(
1

n

n∑
i=1

z′izi

)(
1

n

n∑
i=1

z′iui

)
(5)

Thus, we can apply WLLN and prove that b̂2SLS
p−−−→

n→∞
b by (ASSUMPTION1).

2.2 Asymptotic Normality

Using an additional assumption, we can derive the asymptotic normality of the 2SLS esti-

mator.� �
Theorem 2.2 (Asymptotic Normality of 2SLS estimator). Suppose that we have the fol-

lowing assumptions:

(ASSUMPTION1) For some 1× L vector zi, E(z′iui) = 0.

(ASSUMPTION2) rank (E[z′izi]) = L, and rank (E[z′ixi]) = K.

(ASSUMPTION3) E[u2
i z

′
izi] = σ2E[z′izi] with E[u2

i ] = σ2. (Note that E[u2
i |zi] = σ2

implies this assumption.)

Under (ASSUNPTION1–3), the limiting distribution of the 2SLS estimator is

√
n(b̂2SLS − b)

d−−−→
n→∞

N(0, σ2{E[x′
izi]E[z′izi]−1E[z′ixi]}−1). (6)� �

Proof. By using (5), we can say

√
n(b̂2SLS − b) =

( 1

n

n∑
i=1

x′
izi

)(
1

n

n∑
i=1

z′izi

)−1(
1

n

n∑
i=1

z′ixi

)−1

×

(
1

n

n∑
i=1

x′
izi

)(
1

n

n∑
i=1

z′izi

)(
1√
n

n∑
i=1

z′iui

)
. (7)

The WLLN and CLT imply that

1

n
z′x =

1

n

n∑
i=1

z′ixi
p−−−→

n→∞
E[z′ixi]

1

n
x′z =

1

n

n∑
i=1

x′
izi

p−−−→
n→∞

E[x′
izi]

1

n
z′z =

1

n

n∑
i=1

z′izi
p−−−→

n→∞
E[z′izi]

1√
n

n∑
i=1

z′iui =
√
n(

1

n

n∑
i=1

z′iui − 0)
d−−−→

n→∞
N(0,Var[z′u]). (8)
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Remember that Var[z′u] = σ2E[z′izi] because of the formula of the conditinal variance. By the

continuous mapping theorem, we can can say the first term of the (RHS) in (8) converges to

[E[x′
izi]E[z′izi]−1E[z′ixi]]

−1 in probability. Therefore, we can apply the Slutsky’s Theorem to the

(RHS) in Eq.(8) and derive (6).

2.3 Asymptotic Efficiency

Now we explain the case that we can regard the method of 2SLS as the same one of the IV.

This section is an advanced result and is devoted for students’ information.� �
Theorem 2.3. Under ASSUMPTION1–3, the 2SLS estimator is efficient in the class of all

instrumental variable estimators using instrument linear in zi.� �
Proof. Let b̂2SLS be the 2SLS estimator, and let b̃ be any other IV estimator using instruments

linear in zi, 1× L random vector. Let the instruments for b̃ be m̃i ≡ ziΓ, where Γ is an L×K

nonstochastic matrix. We assume that rank condition holds for m̃i. For 2SLS, the choice of IVs

is effectively m∗
i = ziΠ, where Π = [E(z′izi)]−1E(z′ixi) ≡ D−1C. (In both cases, we can replace Γ

and Π with
√
n-consistent estimators without changing the asymptotic variance.) Now, under

(ASSUMPTION1–3), we know the asymptotic variance of
√
n(b̂2SLS − b) is σ2[E(m∗

i
′m∗

i )]
−1,

which is equal to Eq.(6). Additionally, recall that b̃ = (
∑n

i=1 m̃
′
ixi)

−1(
∑

i=1 m̃
′
iyi) and we have

√
n(b̃− b) =

(
1

n
m̃′x

)−1(
1√
n
m̃′u

)
,

when we define the stacked model. By the same procedure to derive (6), var[
√
n(b̃− b)]

p−−−→
n→∞

σ2[E(m̃′
ixi)]

−1[E(m̃′
im̃i)][E(x′

im̃i)]
−1 is proven.

To show that Avar[
√
n(b̃ − b)] − Avar[

√
n(b̂2SLS − b)] is p.s.d., it suffices to show that

E(m∗
i
′m∗

i ) − [E(x′
im̃i)][E(m̃′

im̃i)]
−1[E(m̃′

ixi)] is p.s.d. But xi = m∗
i + ri, where E(z′iri) = 0,

and so E(m̃′
iri) = 0. Here, xi represents the data vector and ri is exogeneous variable vector.

It follows that E(m̃′
ixi) = E(m̃′

im
∗
i ), and so

E(m∗
i
′m∗

i )− [E(x′
im̃i)][E(m̃′

im̃i)]
−1[E(m̃′

ixi)]

= E(m∗
i
′m∗

i )− [E(m∗
i
′m̃i)][E(m̃′

im̃i)]
−1[E(m̃′

im
∗
i )]

= E(s∗i
′s∗i ), (9)

where s∗ = m∗
i − L(m∗

i |m̃i) is the population residual from the linear projection of m∗
i on m̃i.

Because E(s∗i ′s∗i ) is p.s.d, the proof is completed.

2.4 Testing for Endogeneity

Consider the null hypothesis which implies all explanatory variables are exogeneous. In this

case, we can test on the difference between the 2SLS estimator and the OLS estimator. We

can use Durbin=Wu=Hausman (DWH) test statistic such as:

DWH = (b̂IV − b̂OLS)
′[(x̂′x̂)−1 − (x′x)−1]−(b̂IV − b̂OLS)/σ̂

2
OLS, (10)
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where [(x̂′x̂)−1 − (x′x)−1]− is generalized inverse,1 except in the usual case that all elements of

xi are allowed to be endogeneous under the alternative. Asymptotically, DWH ∼ χ2(d), where

d is the rank of Var(b̂IV )− Var(b̂OLS).

1Remind that the rank of (x̂′x̂)−1 and that of (x′x)−1 is not same.
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3 R Excercise

Today, we estimate the wage function by using AER package. Suppose the following regres-

sion model such that:

log(Wage)i = α + β1(Educational Year)i + β2(Test Score)i

+ β3(Unemployment Rate)i + β4(Tuition)i + ui. (11)

In this estimation, the year of the education is regarded as the endogeneous variable. Remind

that ui implies the factors which are NOT represented as the explanatory variables in the

previous equation (e.g. the study motivation). Therefore, we must apply the IV method to

estimate above equation. The selected instrumental variable is the distance to the university.

rm(list=ls(all=TRUE))

library(AER)

library(lmtest)

library(sandwich)

library(stargazer)

data(" CollegeDistance ")

#fix(CollegeDistance)

unep <-CollegeDistance [,8]

wage <-CollegeDistance [,9]

score <-CollegeDistance [,3]

distance <-CollegeDistance [,10]

tuition <-CollegeDistance [,11]

year <-CollegeDistance [,12]

ivdata <-data.frame(wage ,year ,score ,distance ,unep ,tuition)

fix(ivdata)

#Estimate IV by using exogeneous and instrumental variables.

#IV:ivreg function/ 2SLS:ivreg.fit function

ivest <-ivreg(log(wage) ~ year + score + unep + tuition |

score + unep + tuition + distance)

#Checking the White Estimator (HCCME).

wivest <-coeftest(ivest , df = Inf , vcov = vcovHC(ivest , type = "HC0 "))

#Score does NOT explain the wage.

stargazer(wivest , title="Wage Function",

style ="all", type=" latex")
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Table 1: Wage Function

Dependent variable:

year 0.042∗∗

(0.018)

z = 2.345

p = 0.020

score −0.003

(0.002)

z = −1.469

p = 0.142

unep 0.011∗∗∗

(0.001)

z = 14.364

p = 0.000

tuition 0.108∗∗∗

(0.006)

z = 19.208

p = 0.000

Constant 1.619∗∗∗

(0.163)

z = 9.949

p = 0.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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