TA session for Econometrics 1 (Spring & Summer 2024)

Date # Title / Contents Handout
2024/4/12 1 TA Session 1 PDF
1. Course Aims and Objectives
2. Matrix Knowledge
3. Differentiation of Matrix
2024/4/19 2 TA Session 2 PDF
1. Review of Mapping
2. Review of Optimisation
3. Large Order and Small Order
4. Basic Convergence Theory
2024/4/26 3 TA Session 3 PDF
1. Multivariate Normal Distribution
2. Ordinary Least Squares
3. RExercise
2024/5/10 4 TA Session 4 PDF
1. Lebesgue-Stieltjes Expression
2. Markov’s inequality and Chebyshev’s Inequality
3. Law of Large Numbers
4. Characteristic Function and Moment Generating Function of a Random Variable
5. Central Limit Theorem
Appendix A.
Appendix B.
2024/5/17 5 TA Session 5 PDF
1. Asymptotic Properties of OLSE
2. Test Statistics
Appendix
2024/5/24 6 TA Session 6 PDF
Exercise
1. Review of Some Concepts for a Multivariate Normal Random Variable
2. Multiple Regression Model
3. Gauss–Markov Theorem for a Multiple Regression Model
4. Asymptotic Normality for the OLS Estimator of a Multiple Regression Model
Appendix A
Appendix B
2024/5/31 7 TA Session 7 PDF
1. Review of F Statistic Test
2. Constrained OLS
3. R Exercise
Appendix
2024/6/7 8 TA Session 8 PDF
1. Matrix Transformation
2. Generalized Least Squares Estimator
3. Gauss–Markov Theorem for the Generalized Least Squares Estimator
4. Comparison of the OLS and GLS estimator
5. Asymptotic Normality for the GLS Estimator
Appendix
2024/6/14 9 TA Session 9 PDF
1. GLS(cont’d)
2. M-estimation
3. Introductory Topics of the ML Method
4. R Excecise
2024/6/21 10 TA Session 10 PDF
1. M–Estimation
2. Consistency and Asymptotic Normality for the MLE
3. Non–linear Optimization Procedure
Appendix A
Appendix B
2024/6/28 11 TA Session 11 PDF
1. The MLE of a Single Regression Model
2. The MLE of a Multiple Regression Model
3. The Properties of AR(1) Model and its Estimation
4. Linear Regression Model with the Auto Correlation of the Error Term
2024/7/5 12 TA Session 12 PDF
1. Review of the Asymptotic Theory
2. Review of the Asymptotic Normality of the M-estimator
3. M-estimator of the Linear Regression Model
4. R Excercise
2024/7/12 13 TA Session 13 PDF
1. Endogeneity
2. Measurement Error: Example
3. Instrumental Variable
4. Identification Problem
5. Instrumental Variable Estimator
6. Partial Identification
2024/7/19 14 TA Session 14 PDF
Exercise
1. Deriving the 2SLS Estimator
2. Properties of the 2SLS Estimator
3. R Exercise
2024/7/26 15 TA Session 15 PDF
1. Large Sample Tests
2. The Wald Test
3. The Score Test (Lagrange Multiplier Test)
4. The Likelihood Ratio Test
5. Summary of the Three Tests

畠山樹輝凪 Jukina Hatakeyama